
Final

PKI Specifications to Support the
DoE Travel Manager Program

National Institute of Standards and Technology
Computer Security Division

August 15, 1996

William E. Burr
Donna F. Dodson

Noel A. Nazario
W. Timothy Polk

Final

Final

PKI Specifications to Support the
DoE Travel Manager Program

August 12, 1996

1. INTRODUCTION .. 1

1.1 SYSTEM OVERVIEW... 1
1.2 CONCEPT OF OPERATIONS.. 1

2. INFRASTRUCTURE COMPONENT SPECIFICATIONS .. 2

2.1 CERTIFICATION AUTHORITY (CA).. 2
2.2 ORGANIZATIONAL REGISTRATION AUTHORITY (ORA).. 9
2.3 DIRECTORY SERVICE (DS)... 12

3. CERTIFICATE PROCESSING MODULE .. 13

3.1 FUNCTIONAL SPECIFICATION... 14
3.2 TECHNICAL SPECIFICATIONS.. 15

4. CRYPTOGRAPHIC MODULE REQUIREMENTS .. 17

4.1 CA CRYPTOGRAPHIC MODULE REQUIREMENTS.. 17
4.2 ORA AGENT CRYPTOGRAPHIC MODULE REQUIREMENTS.. 17
4.3 USER HARDWARE CRYPTOGRAPHIC MODULE REQUIREMENTS... 17
4.4 USER SOFTWARE CRYPTOGRAPHIC MODULE REQUIREMENTS.. 18

5. SUPPORT APPLICATIONS... 18

5.1 INITIAL CERTIFICATE REQUEST.. 18
5.2 CERTIFICATE RENEWAL... 18
5.3 CERTIFICATE REVOCATION.. 19

6. DATA FORMATS ... 19

6.1 CERTIFICATE FORMAT... 19
6.2 CERTIFICATE REVOCATION LIST (CRL).. 29
6.3 CERTIFICATION PATH VALIDATION .. 36
6.4 TRANSACTION MESSAGE FORMATS.. 37
6.5 PKI TRANSACTIONS.. 43

7. REFERENCES... 50

APPENDIX A - X.509 V3 CERTIFICATE ASN.1 .. 52

APPENDIX B - CERTIFICATE AND CRL EXTENSIONS ASN.1 .. 56

APPENDIX C - API FOR CERTIFICATE PROCESSOR. .. 64

APPENDIX D - CRYPTOGRAPHIC APPLICATION PROGRAMMING INTERFACE 71

APPENDIX E - SAMPLE PERFORMANCE SPECIFICATIONS .. 72

APPENDIX F - CA KEY PAIR UPDATE ... 76

Final

Final

Definitions, Terms, and Acronyms

Abstract Syntax Notation 1 (ASN.1): an abstract notation for structuring complex data objects; in
a PKI, ASN.1 is always used with the distinguished encoding rules (DER).

accredited: recognize an entity or person to perform a specific action; CAs accredit ORAs and
user sponsors

agents: personnel authorized to act on the behalf of an infrastructure component (CA, or ORA)

certify: the act of issuing a certificate

certificate: a structure defined by the X.509 authentication standard

certificate revocation list (CRL): a list of revoked but unexpired certificates issued by a CA

certification authority (CA): CAs issue certificates to users and other CAs. CAs issue CRLs
periodically, and post certificates and CRLs to a directory service

Distinguished Encoding rules (DER): rules for encoding ASN.1 objects

digital signature: a data unit that allows a recipient of a message to verify the identity of the
signatory and integrity of the message.

Digital Signature Algorithm (DSA): the digital signature algorithm specified in FIPS PUB 186.

directory service (DS): a distributed database service capable of storing information, such as
certificates and CRLs, in various nodes or servers distributed across a network.

hash: a non-reversible method for reducing any amount of data to a fixed size and unique value.

message digest: the fixed size result of hashing a message.

operators: personnel who perform backups, review audit logs, and generally maintain the system.

organizational registration authority (ORA): an entity that acts an intermediary between the CA
and user; the CA trusts the ORA to verify the binding between a user identity and their public key.

user registration: notification to a CA that a user should be issued a certificate.

user sponsor: a person who is permitted to register users with a particular CA.

Final

Final

1

Draft DoE PKI Specifications

1. Introduction

1.1 System Overview
This specification defines a public key infrastructure (PKI) and associated client services
to support the DoE Travel Manager program. The infrastructure consists of a single
certification authority (CA), multiple organizational registration authorities (ORAs), and a
distributed directory service. This infrastructure will issue X.509 V3 certificates and V2
CRLs. The DoE PKI will be a complete PKI on its own, but is designed to join the
emerging Federal PKI as it is deployed.
This is shown as Figure 1.

Users will execute travel applications
on their local system, using hardware
or software cryptographic modules as
required by their roles. In addition to
the cryptographic module (which
supports key generation, signature
generation, and verification), a
certificate processing module and
several PKI support applications are
required. The certificate processing
module will obtain certificates and
CRLs from the directory and verify certification paths. The PKI support applications will
permit users to apply for their initial certificates, electronically renew certificates, and
revoke certificates.

1.2 Concept of Operations
This section provides a brief overview of the concept of operations for DoE's public key
infrastructure, and is intended to ease comprehension of the following specification.

DoE employees who will participate in the DoE Travel System will be registered with the
DoE CA. The CA will generate distinguished names for each registered user and
determine which type of cryptographic module is appropriate for the user. The CA will
notify the employees to register for Travel training; software users will receive a software
cryptographic module and instructional materials.

Software users will generate key materials on their own systems and bring the public key
to the training session on a diskette. Hardware users generate their keys on hardware
tokens. Both classes of users will present proper identification to the ORA after the
training session; the ORA will request an initial certificate on behalf of the user.1 The ORA

 1 For users who are not involved in travel, the training session prior to presentation of credentials and
key materials to the ORA may be omitted.

Federal PKI

DoE CA

DoE ORAs

Figure 1. DoE PKI and emerging Federal PKI

Final

2

will provide the user's certificate, the DoE CA's certificate, and the addresses of the CA
and directory server to the user.

After initial certification, users will be able to generate and verify digital signatures.
Verification of certification paths will be performed by finding a trust chain that begins
with the DoE CA.

2. Infrastructure Component Specifications
This section specifies the components of a public key infrastructure in support of the DoE
Travel System. Functional, security, and technical specifications are provided for each
infrastructure component (i.e., the CA, ORAs, and the DS). The following specifications
define transactions involving infrastructure components and the archiving requirements
imposed upon the components.

2.1 Certification Authority (CA)
The Travel System CA shall generate, revoke, publish, and archive certificates. The CA
shall rely upon a Directory Service (DS) to make certificates and CRLs available to all
users. The CA shall archive all transactions (e.g., certificate requests, and revocation
requests.) The CA shall incorporate facilities to conduct system backups, and maintain a
separate audit log for the monitoring and tracking of security incidents. The operation and
design of the CA shall be fully documented to allow operators thorough control and
understanding of the implementation and the specification of any future enhancements.

2.1.1 CA Functional Specifications
The CA shall perform the following functions:

• Authenticate CA agents and systems operators;
• Enforce dual control;
• Generate and verify signatures using the DSA;
• Generate its own public-private key pair;
• Execute tests for the quality of the public key parameters (i.e., p, q, and g) identified

in FIPS PUB 186;
• Request a CA certificate and establish cross-certificates;
• Create, deliver, and post subordinate certificates;
• Generate or obtain unique distinguished names for new users;
• Ensure that the subject of the certificate possesses the corresponding private key for

every certificate issued without gaining access to the actual private key;
• Accept certificate revocation requests from users and other ORAs;
• Validate revocation requests and revoke certificates;
• Create, maintain, and post CRLs;
• Maintain required local information, such as the contents of CA name space;
• Maintain a list of accredited ORAs and user sponsors;
• Maintain record of all certificates issued and the number of renewals permitted for

each certificate;

Final

3

• Maintain record of all CRLs issued;
• Create and maintain system audit logs; and
• Generate or obtain time stamps.

Initialization

The CA shall be able to generate and test values for the DSA parameters p, q, and g as
specified in FIPS 186. These parameters shall be used by the CA and all its subordinates
in key generation. The size of the prime modulus p shall be 1024 bits for all CAs, ORAs,
and users. The values of parameters p, q, and g shall be configurable. At a minimum, the
quality tests for DSA parameters shall include:

• primality of p;
• primality of q;
• q divides evenly in p-1;
• g > 1;
• y < p.

The CA will generate its own key pair and publish its own certificate. It is expected that
the DoE Travel System CA will be incorporated to the Federal PKI in the future, therefore
it shall be able to perform cross certification. The CA's cryptographic module will
cryptographically split the private key for backup purposes and the partial keys will be
placed under the control of separate CA agents for backup purposes.

At initialization time, the CA shall archive the following items:

• DSS parameters;
• self issued certificate or certificate issued by parent CA;
• CA and parent CA Ids;
• assigned name space; and
• any other restrictions imposed on the CA.

If the CA is joining an existing hierarchically managed infrastructure, the CA will also
generate a CA Certificate Request and transmit it to its superior CA.2 This transaction will
be archived, including the response from the superior CA.

Accrediting ORAs and User Sponsors

The CA shall maintain a database of accredited ORAs. Accredited ORAs can vouch for
the identity of users requesting certificates. Some ORAs will, in addition, be permitted to
vouch for the identity of ORA agents for other ORAs.

The CA shall maintain a database of accredited user sponsors. User sponsors register
users by providing the CA with the names and organizational information of individuals
that need to obtain certificates. Sponsors shall themselves obtain certificates that will be
used to sign user name lists provided to the CA.

 2 The Federal PKI Technical Working Group has defined a hierarchically managed structure for the
Federal PKI.

Final

4

The CA shall archive all additions and deletions from the ORA and user sponsor
databases.

User Registration

Upon receipt of a user name list, the CA shall verify that the signer is an accredited user
sponsor. Using the information submitted by the user sponsors, the CA shall generate or
obtain distinguished names and put together certification packages. These packages will be
delivered to users along with the software for the generation of keys and initial
certification requests. The distinguished names, certification package serial number, and
other user information shall be retained by the CA to verify future certificate requests.

The distinguished names shall be created using X.500 name subordination. Distinguished
names contain alphanumeric strings that uniquely identify certificate holders. The CA shall
establish an appropriate name space, following guidelines from the U.S. Government's
Electronic Messaging Program Management Office - Electronic Directory, and only issue
certificates for subject names within it.

The CA shall archive all submitted user name lists, even if they are rejected. The CA shall
archive all distinguished names with the corresponding users names and organizational
information.

Issuing Certificates

The CA shall support two forms of certification requests: initial and renewal. In an initial
request, the identity of the requestor is established in person to an ORA. After examining
identification evidence, the ORA vouches for the user's identity and the binding to the
public key. In a renewal request, the established identity of the requestor is perpetuated
with the request.

The CA shall accept initial certificate requests from ORAs vouching for users and other
ORAs. CA shall also accept certificate renewals from both users and ORAs. Certificate
requests shall be signed by the ORA and include the user's distinguished name, public key,
organization, time stamp, and contact information (electronic mail address, phone
number, and postal address).

Upon receipt of a certificate request from an ORA, the CA shall:

1. verify that the request comes from an accredited ORA;
2. verify the ORA's signature;
3. verify that the user/ORA was registered by an accredited user sponsor;
4. verify that the information on the request matches that provided by the sponsor;
5. form and sign a new user/ORA certificate;
6. post the new certificate on the DS; and
7. send a Certificate Request Response to the ORA containing the new certificate and

the CA certificate.

The ORA will deliver the new certificate and the CA's certificate to the user. If the CA
rejects the certificate request, it shall report the failure to the ORA stating the reason.

Final

5

Upon receipt of a certificate renewal request from an entity, the CA shall:

1. verify that the renewal request was signed by the private key corresponding to the
entity's unexpired unrevoked certificate;

2. verify that a second nested signature was made with the private key corresponding
to the new public key;

3. verify that the certificate is eligible for renewal (by examining flags in the
certificate or querying a local database);

4. form and sign a new user certificate;
5. post the new certificate on the DS; and
6. send a Certificate Request Response to the entity containing the new certificate.

If the CA rejects the certificate renewal request, it shall report the failure to the entity
stating the reason. The CA shall log all certificate and renewal requests and the CA
responses, even if the transactions are rejected.

The CA shall issue X.509 version 3 certificates. The fields and extensions utilized, and the
values assigned to them, shall be in accordance with Section 6.1. After generating and
signing the certificate, the CA shall send the certificate to the directory service and the
requestor. The CA shall include a directory user agent (DUA) to access the directory
service. The CA's DUA shall support authentication of the CA to the directory service.

Cross Certification

The CA shall issue certificates to other CAs with appropriate constraints. One CA initiates
the cross certification process through procedural mechanisms as defined in the CA's
Operational Policy. After agreeing to cross certify, the CAs exchange public keys and the
associated parameters through out-of-band channels.

The initiating CA issues a certificate with appropriate constraints to the responding CA.
The responding CA issues a certificate with appropriate constraints to the initiating CA.
The CAs post the certificates to the directory service.

The CAs may optionally construct X.509 cross certificates from the new certificates and
post them to the directory service as well.

The Travel System CA shall include mechanisms to support both the initiating and
responding CA roles. The constraints placed upon CA certificates issued as a result of
cross certification will be determined by policy. The cross certification mechanisms shall
support specification of all constraints identified in section 6.1.

Revoking Certificates

The CA shall be capable of generating and issuing CRLs. The CA shall support issuing a
single CRL for its name space and distribution point CRLs. The CA may optionally
support incremental, or delta, CRLs. The types of CRLs issued will be determined by
policy.

CRLs shall be generated from the previous CRL and approved pending certificate
revocation requests. When a new CRL is generated, revoked unexpired certificates from

Final

6

the previous CRL shall be carried over to the new CRL, and any certificates with
approved pending certificate revocation requests shall be added to the new CRL. A
certificate with an approved pending certificate revocation request shall be included in the
next CRL even if it expires before the CRL is issued.

The CA may only revoke certificates it issued. The signer of the revocation request must
either be an accredited ORA acting on behalf of the certificate holder or the holder's
sponsor, or the holder of the certificate to be revoked. The CA shall validate the
revocation request prior to including the certificate in a CRL.3 If the revocation cannot be
validated, or the source of the request was not one of the authorized parties, the
revocation request shall be rejected.

The CA shall issue X.509 version 2 CRLs.4 The fields and extensions utilized, and the
values assigned to them, shall be in accordance with Section 6.2. After generating and
signing the CRL, the CA shall send the CRL to the directory service.

CRLs and certificate revocation requests shall be reported and logged, even if they are
rejected. Notifications of rejection shall also be logged.

Records keeping

The CA shall log the following certification activities: request to create a certificate,
certificates issued, certificate requests rejected, request to revoke a certificate, revocation
of a certificate, rejection of a revocation, generation of a CRL, and posting of a CRL to
the DS. This information shall be stored off-line for archival purposes at least weekly.
The actual frequency shall be established by the CA Operational Policy based on workload
and perceived security threats. All archived information shall be maintained in a form that
prevents unauthorized modification.

The CA shall include facilities to perform periodic, automated full and incremental
backups to off-line storage.

The CA shall keep a separate audit log for the monitoring and tracking of security
incidents.

Failure or Compromise Recovery

Steps shall be taken to minimize the possibility of compromise and corruption of the CA,
its own databases, and the directory. Upon occurrence of a system compromise or failure
that may affect the integrity of the system, the CA shall generate, or obtain if merged into
the Federal PKI, a new certificate, issue the appropriate CRLs, and notify the affected
parties of the need to re-authenticate to replace the compromised certificates.

To support compromise and failure recovery, the CA shall include facilities to re-issue
previously issued certificates under a new CA key whenever possible. If the integrity of

 3 Validation of a revocation request shall include verification of the signature on the request. Out-of-
band verification of revocation requests signed by ORAs may optionally be required by policy. The CA's
revocation mechanism must be configurable to support such policy requirements.
 4Version 2 CRLs correspond to the Version 3 certificate; the Version 2 certificate definition did not
result in cretion of a new CRL format.

Final

7

existing certificates can be established (e.g., through use of off-line archives), the CA may
use these facilities to re-issue the user certificates with the new CA key.5

A key backup process, where separate CA agents hold separate key components, shall be
provided to facilitate recovery from component failures which do not compromise the key
or result in database corruption. This process will permit a CA to resume issuing
certificates with the current private key using a new cryptographic module.

2.1.2 Security Specifications
The CA shall operate under the principles of split knowledge and dual control. The CA
shall include a hardware cryptographic module which meets the requirements for CA
cryptographic modules presented in Section 5.

Private keys shall be stored within the cryptographic module or encrypted using a FIPS
approved confidentiality algorithm before being output. CA keys used for signing
certificates shall never be exported in clear form and should reside in a cryptographic
module operated under the principles of split control of two or more CA agents. At least
two CA agents shall be required to activate the CA's cryptographic module for signing
certificates; provisions shall be made for backup agents for cryptographic module
activation. CA signature keys shall always be backed up under split control, i.e., no single
agent shall be able to load the complete private key on any system without the cooperation
of the other agents holding portions of the key. CA signature public keys shall be 1024
bits long; the validity period shall be configurable.

2.1.3 Transaction Set
Table 2-1 summarizes electronic transactions used in providing certificate management
services to users of the Travel System. These transactions enable request, delivery, and
revocation of ORA and user certificates, posting of certificates and CRLs on the DS, and
the retrieval of certificates and CRLs from the DS for signature verification.
The CA shall process initial certification requests through its ORAs in the form of
CertReq messages. The CertReq message is signed by the ORA in the PKIProtection
structure. By signing the request, the ORA vouches for the identity of the user and
confirms that the user is in possession of the corresponding private key. The CA responds
to the ORA or user with a CertRep message. If the request was accepted, this message
contains the new certificate. If the request was rejected, this message contains the error
code.

The CA shall process certificate renewal requests in the form of KeyUpdReq messages.
These messages are sent to the CA by the entity requesting the certificate. The message
shall include the user's distinguished name, the serial number of their current certificate,
the new public key, a proposed validity period, and a proposed key id. The message shall
be signed twice according to the format in Section 6.4.1. The certificate renewal request
shall be signed with the new private key; the PKIHeader and PKIBody shall constitute the

 5 Travel System users must obtain the CA’s public key and parameters through out-of-band channels
(e.g., from the ORA) to validate certification paths. The change will be tranparent to users who trust
other CAs that have cross-certified with the Travel System CA.

Final

8

message. The signed certificate request will be re-signed with the old private key
corresponding to the entity's unexpired, unrevoked certificate from the CA. The second
signature shall be calculated using the signed PKIMessage as the message. The CA shall
respond to the requestor in the form of an KeyUpdRep message. This message will contain
either a new certificate or a failure code. If issued, the certificate will include the user's
distinguished name and the new public key. The CA is free to modify the proposed validity
period and key identifier.

Table 2-1 - Travel System CA PKI Transaction Set

Transaction Description From To

Initial
Certificate
Request

ORA submits a certificate request on behalf of an
authenticated user

ORA CA

CA returns signed certificate or error message CA User,
ORA

Certificate
Revocation

ORA or certificate holder requests revocation of a
certificate

User,
ORA

Issuer
CA

CA responds with acceptance or rejection of the
revocation request

Issuer
CA

ORA,
User

Certificate
Renewal
Request

 doubly signed certificate request - new public key and
current certificate # signed with new and old private keys

User,
ORA

CA

 CA returns signed certificate or error message CA User,
ORA

Post
Certificate

CA posts a new certificate to the DS after strong
authentication

CA DS

Post CRL CA posts a new certificate to DS after strong
authentication

CA DS

Retrieve
Certificate

Query DS for an entity's certificate(s) CA DS

Retrieve CRL Query DS for the latest CRL issued by a particular CA CA DS

The CA shall receive RevReq messages from ORAs or end entities. The RevReq message
shall include the certificate serial number or the user's distinguished name and the key
identifier. The CA shall respond with a RevRep message. This message shall include
status and failure information, and may include additional details about the revoked
certificate.

Final

9

The Travel System CA shall maintain a log of all instances of the following transactions:
certificate requests, certificate renewals, revocation requests, CRL generation, and posting
of certificates and CRLs. All entries of the log shall be timestamped.

2.2 Organizational Registration Authority (ORA)
The O RA vouches for the identity of users requesting certification. Users request initial
certification by appearing in person before an ORA for their parent CA and submitting a
certificate request signed with the private key for the public key being certified. The
format for the certificate request appears in Section 6.4. The ORA shall verify the user's
signature on the request to ensure that the user possesses a complete key pair. An ORA
agent verifies all the personal and affiliation information on the request and the signature
according to the issuance policy for the type of certificate being requested. After the
signature and the user's identity are verified, the ORA agent signs and sends an electronic
certificate request to the CA.

The ORA requests certificate revocation on behalf of users who can not access their
private key and organizations that wish to revoke an employee's certificate. The format of
the revocation request is presented in Section 6.4. The ORA shall verify the identity of
the requesting party. After the signature and the user's identity are verified, the ORA
agent signs and sends an electronic revocation request to the CA.

The ORA function may be collocated with the CA or performed at a separate facility.

The operation and design of the ORA shall be fully documented to allow operators
thorough control and understanding of the implementation and the specification of any
future enhancements.

2.2.1 ORA Functional Specifications
ORAs shall perform the following functions:

• Provide users with the CA’s public key and parameters;
• Authenticate ORA agents and system operators;
• Communicate electronically with parent CA to exchange transaction messages

described in Section 2.2.3;
• Verify signatures on user certificate requests to ensure user possesses complete public-

private key pair without gaining access to the actual private key;
• Process certificate revocation requests;
• Create and maintain system audit logs;
• Archive all transactions;
• Periodic system backups.

ORAs shall keep record of the identity of ORA agents, the dates and times when they
operated the ORA, and the transactions (e.g., certificate requests, certificate revocations)
they processed. Upon receipt of a certificate request, the ORA agent authenticates the
user according to the appropriate certificate issuance policy, verifies the signature on the
request using the public key in the certificate, signs the request, and sends it to the parent
CA. The CA need not return the signed certificate to the user via the ORA, it may do so

Final

10

directly. If the CA sends the newly signed certificate to the ORA, the agent shall copy it
onto the user's diskette or load it into the user's hardware token along with the CA's
certificate. The ORA shall always provide the CA’s public key and parameters to the user
requesting a certificate.

ORAs shall accept and verify in-person certificate revocation requests from the users. The
ORA agent shall sign the requests and send them to the parent CA.6 ORAs shall have a
backup capability, be able to archive all transactions performed, and keep record of
personal credentials reviewed.

2.2.2 ORA Security Specifications
ORAs shall authenticate ORA agents and system operators before performing any
transactions or systems operations. The ORA shall include facilities for full and
incremental backup, archiving PKI transactions, and system logs.

All operations of the ORA, except system backups, shall require an activated ORA agent's
cryptographic module. The ORA agent's cryptographic module shall provide integrity and
non-repudiation for PKI transactions and archives. Additional security requirements of the
ORA, as specified in the DoE CA's Operational Policy, will be achieved through
employment of physical security measures.

Requirements for ORA agents' cryptographic modules are specified in Section 5. ORA
agents' signature public keys shall be 1024 bits long, the key validity period shall be
configurable. If the system design permits system operators other than ORA agents to
perform system operations, their cryptographic module shall meet the requirements for
software cryptographic modules presented in Section 6.4.

2.2.3 Transaction Set
Table 2-2 gives the subset of electronic transactions used by the ORA in providing
certificate management services to users of the DoE Travel System. These transactions
enable request, delivery, and revocation of ORA and user certificates, and the retrieval of
certificates and CRLs from the DS for signature verification.

The ORA shall receive initial certification requests on diskettes in the form of CertReq
messages. The CertReq message is signed by the user in the PKIProtection structure.
After reviewing the user's credentials and confirming that the user is in possession of the
corresponding private key, the ORA will extract the CertReqContent , and create a new
CertReq message with the ORA agent's name and signature. The ORA will send this
message to CA. The ORA shall copy the Travel System CA's certificate to the user's
diskette, along with configuration information (such as the CA's network address.)

The ORA may receive a CertRep message from the CA. If the request was accepted, the
ORA shall copy the certificate to the user's diskette. If the request was rejected, the ORA
will review the error code and may submit a new request.

 6 ORAs issuing certificates to hardware cryptographic module holders must be able to read and load
selected information from and to hardware cryptographic tokens. The ORA shall not have access to user
signature private keys.

Final

11

The ORA shall perform revocation requests upon the request of authenticated users or
their organizations. The ORA shall generate RevReq messages, including the certificate
serial number or the user's distinguished name and the key identifier. The message shall be
signed by the ORA agent. The CA shall respond to the ORA with a RevRep message.
This message shall include status and failure information, and may include additional
details about the revoked certificate. If the certificate is revoked, the ORA shall provide
this information to the requestor. If the request is rejected, the ORA will review the error
code and re-formulate the request.

 Table 2-2 - Travel System ORA PKI Transaction Set

 Transaction Description From To

 Initial
Certificate
Request

 ORA submits a certificate request on behalf of an
authenticated user

 ORA CA

 CA returns signed certificate or error message CA User,
ORA

 Certificate
Revocation

 ORA requests revocation of a certificate ORA Issuer
CA

 CA responds with acceptance or rejection of
revocation request

 Issuer
CA

 ORA

 Certificate
Renewal
Request

 doubly signed request new public key and current
certificate # signed with new and old private keys

 ORA Issuer
CA

 CA returns signed certificate and CA's certificate Issuer
CA

 ORA

 confirmation signed with old key ORA Issuer
CA

 Retrieve
Certificate

 Query DS for an entity's certificate(s) ORA DS

 Retrieve CRL Query DS for latest CRL issued by a particular CA ORA DS

ORAs shall maintain a log of all instances of the following transactions: Certificate
Request, Certificate Renewal Request, Certificate Request Response, Key Compromise
Report, and Certificate Revocation Request. All entries of the log shall be time stamped.

Final

12

2.3 Directory Service (DS)
A directory service shall be provided that allows any Travel System user to retrieve
certificates and verify the electronic signatures by any other user under the Travel System
CA. The DS shall also store the most recent certificate revocation list (CRL) for the
Travel System CA. It shall also allow users certified by other CAs to retrieve Travel
System user certificates. This section contains the specifications for the Directory Service.

2.3.1 DS Functional Specifications
The DS shall perform the following functions:

• Store certificates and CRLs issued by the CA;
• Accept and respond to user queries for certificates and CRLs;
• Authenticate entities attempting to update or modify certificates or CRLs; and
• Prevent unauthorized access to the system running the service.

2.3.2 DS Security Specification
The DS shall authenticate all entities attempting to update or modify certificates and
CRLs. Only the CA may create or update such entries. Access to the system running the
service shall be strictly controlled and limited to the appropriate personnel.

2.3.3 DS Implementation
The assumption of the X.509 standard, and many of its derivative standards, is that
certificates are available in X.500 directories and certification path verifiers find needed
certification paths by directory queries. This is the ultimate goal of the Federal Public Key
Infrastructure (FPKI), however full X.500 directory service may not be available in the
near term for the use of the Travel System and establishment of a proper X.500 directory
for the Travel System may not be a cost effective alternative. The Travel System may be
designed so that some clients sign documents, but do not verify signatures and therefore
do not require a signature verification capability and the capability to find certification
paths. This section states the requirements for finding and making certification paths
available to the certification path verifiers, where they are needed.

Travel System clients that must verify signatures, shall have an automated process for
finding certification paths to process the signatures on travel documents. This certificate
processing specification does not establish where signatures (and therefore certification
path verification) are required in the Travel System. This automated process for finding
certification paths may consist of (but is not limited to) one or more of the following:

 (a) provision of an X.500 directory service to hold certification path and/or other travel
information, with a user directory agent to access that information. The X.500
distinguished names contained in certificates are used to locate needed certificates. From
the point of view of compatibility with the emerging Federal PKI, this is the most desirable
solution;

Final

13

 (b) use of some other commercial directory product that may not be strictly X.500
compatible to access needed certificates. Alternative Name extensions may be used to
facilitate accessing certificates;

 (c) use of a World Wide Web server to provide certification path information.
Alternative Name extensions may be used to provide URLs pointing to certificate
information;

 (d) use of an on-line database to supply certification path information. Access to the
database may be via a network, or the database may be replicated at points where
signatures must be verified.

 (e) the Travel System may be designed so that clients provide the needed certificates
attached to the documents that they sign.

For extensibility to future applications and integration with the FPKI, the process for
certificate path verification and the process for finding certification paths shall be
separated, so that it is possible to upgrade or replace the process for finding certification
paths, without replacing the certification path verification process.

If the provided mechanism for finding certification paths requires alternative names (for
example URL or Internet address) then the Travel System CA shall be capable of
generating the appropriate alternative name in certificates and CRLs.

3. Certificate Processing Module

Applications will obtain PKI-supported
security services through a certificate
processing module. The application
interface, defined in Appendix C, will
provide a simple interface to security
services. This module will request
infrastructure services, such as issuing
or revoking certificates, and obtaining
current certificates and CRLs . The
module will manage a local cache of
certificates and CRLs to enhance
performance. The certificate
processing module shall verify
certificate chains, generate certificate
requests, and request certificate
revocation. The certificate processing
module will rely upon the availability of
a cryptographic module to obtain
required cryptographic services, such
as generation and verification of digital
signatures and key generation.

high level API

Travel, PKI Support,
or other Applications

Certificate
Processing
Module

cryptographic
 module

CAPI

Figure 2. Accessing PKI Services

Final

14

3.1 Functional Specification
The certificate processing module implements transactions with the PKI infrastructure
components, manages a local information base, and processes certificate chains. The
module also provides a high-level interface to basic cryptographic functions; these calls
will be passed on to the cryptographic module (Section 5) for processing.

The certificate processing module shall perform transactions with the Travel System CA
and the directory service. The certificate processing module shall manage a local
information base including the user's certificate, common infrastructure information (e.g.,
common DSA parameters), system configuration information (e.g., addresses for directory
servers, ORAs, and the CA), and a cache of certificates and CRLs to enhance
performance. The certificate processing module shall protect the integrity of its
information base with digital signatures.

The certificate processing module shall support the programming interface specified in
Appendix C. The certificate processing module shall rely on the availability of a
cryptographic module supporting the programming interface specified in Appendix D.

The certificate processing module shall be able to perform the following functions:

• Request certificate registration and renewal;
• Request certificate revocation;
• Query the DS for certificates and CRLs;
• Verify the path of a certificate to the DoE Travel System CA;
• Sign and timestamp information objects;
• Verify signed, timestamped information objects; and
• Manage a local certificate and CRL cache.

Applications

crypto module

retrieve CRLs,
certificates

infrastructure
requests

directory
server

CA
and/or
ORA

certificate processing,
chain verification,
transaction
processing, cache
management, etc.

locally stored
information

certificate and
CRL cache

user's
certificate

CA, ORA, and
DS addresses

Figure 3. Certificate Processing Module

Final

15

The certificate processing module shall be able to generate and transmit certificate
registration, renewal, and revocation requests to its CA, and process the response. It shall
use the DS for obtaining certificates and CRLs, and shall verify the signature of each entry
retrieved. Certificates and CRLs obtained from the directory or from other sources are
used for performing path verification. For efficiency, the certificate processing module
shall cache CRLs and certificates where appropriate.

3.2 Technical Specifications
The certificate processing module shall:

• Generate directory service requests and interpret responses;
• Parse certificate and CRL formats as defined in Section 2;
• Verify certificate chains beginning with the Travel System CA;
• Generate and interpret PKI messages;
• Cache certificates and CRLs; and
• Manage local information, such as the addresses of the DS and CA.

The certificate processing module shall implement the transactions listed in Table 3-1. The
certificate processing module shall generate messages where the From column specifies
User or Any. The certificate processing module shall receive and interpret message where
the To column specifies Users.

The certificate processing module shall implement the programming interface specified in
Appendix C. The certificate processing module shall rely upon the services of a
cryptographic module supporting the CAPI specified in Appendix D. The certificate
processing module may rely upon the application to provide time and date information.

The certificate processing module shall support the generation of the following PKI
message types:

• CertReq ;
• RevReq ; and
• KeyUpdReq .

The certificate processing module shall support the processing and interpretation of the
following PKI message types:

• CertRep ;
• RevRep ; and
• KeyUpdRep .

The certificate processing module shall support the generation and processing of the PKI
message types PKIConfirm .

The certificate processing module shall include a directory user agent (DUA) to retrieve
certificates and CRLs from the directory service.

Final

16

Table 3-1- User PKI Transaction Set

Transaction Description From To

Initial
Certificate
Request

User submits certificate request on diskette
to ORA along with credentials

User ORA

ORA submits a certificate request on behalf
of an authenticated user

ORA CA

CA returns signed certificate or error
message

CA User,
ORA

Certificate
Revocation

User requests revocation of a certificate User,
ORA

Issuer
CA

CA responds with acceptance or rejection of
the revocation request

Issuer
CA

User,
ORA

Certificate
Renewal
Request

doubly signed certificate request - new
public key and current certificate serial

number signed with new and old private keys

User CA

CA returns signed certificate and CA's
certificate

CA User

signed with old key User CA

Retrieve
Certificate

User queries DS for an entity's certificate(s) User DS

Retrieve CRL User queries DS for the latest CRL issued by
a particular CA.

User DS

Final

17

4. Cryptographic Module Requirements

For Travel System PKI components and clients the following functions shall occur within
cryptographic modules:

• generation of random numbers;
• generation of DSS key pairs;
• protection of DSS private keys;
• generation of SHA-1 message digests;
• generation of DSS signatures; and
• verification of DSS signatures.

Cryptographic modules may be implemented using software, hardware or a combination
of both. Cryptographic modules shall include validated implementations of DSS, SHA-1,
and DES. The DoE Travel System shall allow the use of software cryptographic modules
for regular users (e.g., travelers) and will require that hardware be used to produce the
signatures by CAs, CA agents, ORA agents, and other users responsible for the operation
and maintenance of systems running the travel application.

To allow the substitution of cryptographic modules in client systems, user cryptographic
modules shall implement the Cryptographic Application Programming Interface (CAPI)
specified in Appendix D.

4.1 CA Cryptographic Module Requirements
In addition to the general requirements above, CA cryptographic modules shall:

• be implemented in hardware and validated as complying with FIPS 140-1 level 3
requirements;

• require the action of two or more CA agents to activate so it can perform digital
signature operations; and

• export the private key in cryptographically split fashion so that the independent key
components can be placed under the control of separate CA agents for backup
purposes.

4.2 ORA Agent Cryptographic Module Requirements
In addition to the general requirements above, ORA cryptographic modules shall:

be implemented in hardware and validated as complying with FIPS 140-1 level 1 and the
level 3 identity-based operator authentication requirements;

• be bound to the identity of the ORA agent (as opposed to the ORA); and
• be unable to export the private signature key.

4.3 User Hardware Cryptographic Module Requirements
In addition to the general requirements above, user hardware cryptographic modules shall:

• authenticate the user;

Final

18

• be validated as complying with FIPS 140-1 level 1 and the level 3 identity-based
operator authentication requirements; and

• be unable to export the private signature key.

4.4 User Software Cryptographic Module Requirements
In addition to the general requirements above, user software cryptographic modules shall:

• authenticate the user;
• be validated as complying with FIPS 140-1 level 1 requirements;
• maintain the private key in encrypted form when not in use;
• always take care to overwrite system memory after using the signature key; and
• use DES in Cipher Block Chaining Mode to encrypt the private signature key and

protect the DES key with a password at least eight characters long that includes one
or more non-alphabetical characters.

5. Support Applications

DoE Travel users will require PKI specific functions to request, renew, or revoke
certificates. Applications implementing these functions utilizing the high level API defined
in Appendix C are required to support DoE travel users. These functions may be
implemented as separate applications, or as a part of the DoE Travel applications.

5.1 Initial Certificate Request
This function will generate a DSS public-private key pair and create a PKI CertReq
message requesting a v3 certificate with the signing algorithm dsaWithSHA1 and the public
key. The user will sign the message using the private key in the PKIProtection structure.
The CertReq message will be written onto a diskette The user can take the diskette with
their credentials to an ORA to obtain a certificate from the PKI.

The ORA shall store the CA’s current public key and parameters on the diskette. The
ORA may also store the user’s certificate on the diskette, or the CA may return a CertRep
message to the user. This message will contain the certificate or a reason code for the
transaction failure. The protocol supporting this transaction is described in detail in
Section 6.5, PKI Transactions.

5.2 Certificate Renewal
This function will generate a DSS public-private key and create a PKI CertReq message
requesting a v3 certificate with the signing algorithm dsaWithSHA1 and the public key.
The user will sign the message twice; the first signature will be generated with the private
key corresponding to the user's unexpired, unrevoked certificate. The second signature
will be calculated on the message formed by the request and the first signature; the
signature will be generated with the new private key corresponding to the public key in the
certificate request.

The CA will return a CertRep message. This message will contain the certificate or a
reason code for the transaction failure. This function must interpret the CertRep message

Final

19

and update the Cryptographic Module information base as appropriate. The protocol
supporting this transaction is described in detail in Section 6.5, PKI Transactions.

5.3 Certificate Revocation
Users may request revocation of their own certificates. To perform this function the user
generates a RevReq message, signs it with the certificate to be revoked, and sends it to
the CA. The CA responds with a RevRep message. This module must be able to
interpret the message and update the Cryptographic Module information base as
appropriate. The protocol supporting this transaction is described in detail in Section 6.5,
PKI Transactions.

6. Data Formats

Basic data formats must be defined for interoperability of PKI components. The data
formats include certificate, CRL, and transaction formats. These specifications include
data formats for all transactions between infrastructure components, and between PKI
clients and infrastructure components.

6.1 Certificate Format
The DoE Travel System shall use the X.509 V3 certificate format. Although the revision
to ITU-T Recommendation X.509 that specifies the version 3 format is not yet published,
the version 3 format has been widely adopted and is specified in American National
Standards Institute X9.55-1995 [X9.55], and the Internet Engineering Task Force's
Internet Public Key Infrastructure working document [PKIX1]. The X.509 version 3
certificate includes the following:

Version
Serial Number
Issuer Signature Algorithm
Issuer Distinguished Name
Validity Period
Subject Public Key Information
Issuer Unique Identifier (optional)
Subject Unique Identifier (optional)
Extensions (optional)
Issuer’s Signature on all the above fields

6.1.1 Certificate Fields
The Abstract Syntax Notation One (ASN.1) definition of the X.509 certificate syntax is
stated in Appendix A. For signature calculation, the certificate is encoded under the
ASN.1 Distinguished Encoding Rules (DER). ASN.1 DER encoding is a tag, length,
value encoding system for each element.

The following items specify the use of the X.509 v3 certificate. With the exception of the
optional subjectUniqueID and the issuerUniqueID fields, the Travel System CA shall
generate these fields and clients shall be capable of processing them in accordance with the

Final

20

X.509 standard. The Travel System CA shall not issue certificates containing the optional
subjectUniqueID and the issuerUniqueID fields.

Version

The version field describes the version of the encoded certificate. The value of this field
shall be 2, signifying a version 3 certificate.

Serial number

The serialNumber is an integer assigned by the CA to each certificate. It shall be unique
for each certificate issued by the Travel System CA (i.e., the issuer name and serial
number identify a unique certificate).

Signature

The signature field contains the algorithm identifier for the algorithm used to sign the
certificate. The signature field includes an algorithmIdentifier , which, in principle may be
used to pass parameters. Certificates conforming to this specification shall be signed with
the DSA algorithm, and the contents of the algorithmIdentifier field shall be as specified
in Section 6.1.2. Certificates shall not include parameters in the signature field.

Issuer Name

The issuer field provides a globally unique identifier of the authority signing the
certificate. The syntax of the issuer name is an X.500 distinguished name.

Validity

The validity field indicates the dates on which the certificate becomes valid (notBefore)
and on which the certificate ceases to be valid (notAfter).

The UTCTime (Coordinated Universal Time) values included in this field shall be
expressed in Greenwich Mean Time (Zulu) and shall express granularity to the minute.
Seconds shall not be used. UTCTime shall be expressed as YYMMDDHHMMZ.

Subject Name

The purpose of the subject field is to provide a unique identifier of the subject of the
certificate. The syntax of the subject name shall be an X.500 distinguished name.

Subject Public Key Information

The subjectPublicKeyInfo field is used to carry the public key and identify the algorithm
with which the key is used. It includes the subjectPublicKey field and an
algorithmIdentifier field with algorithm and parameters subfields. Certificates conforming
to this interoperability specification shall use the DSA algorithm, and the contents of the
algorithmIdentifier field shall be as specified in Section 6.1.2. The parameters subfield of

Final

21

the subjectPublicKeyInfo field shall be the only method used to pass or obtain DSA
parameters.

Unique Identifiers

The subjectUniqueIdentifier and issuerUniqueIdentifier fields are present in the certificate
to handle the possibility of reuse of subject and/or issuer names over time. Certificates
shall not include these unique identifiers.

Extension

The addition of the extension field is the principal change introduced to X.509 v3
certificates. Extensions have three components: extnId , that names the extension, critical,
the criticality flag that specifies that the extension is critical or noncritical, and extnValue,
the extension value. A certificate may contain any number of extensions, including locally
defined extensions. If the criticality flag is set, a client shall either be able to process that
extension, or shall not validate the certificate.

A set of standardized extensions has been developed in an amendment to the X.509
standard [DAM]. The use of these standardized extensions in conforming
implementations is specified in Section 6.1.3 below.

SIGNED Macro

The actual signature on the certificate is defined by the SIGNED macro. See Appendix A
for the ASN.1 definition of the SIGNED macro and associated operators. The signature
includes an algorithmIdentifier that identifies the algorithm used to sign the certificate.
Although this algorithimIdentifier field includes a parameters field that can, in principle,
be used to pass the parameters used by the signature algorithm (see Section 6.1.2), it is
not itself a signed object. The parameters field of the certificate signature shall not be used
to pass parameters. The parameters used to validate a signature shall be obtained from the
subjectPublicKeyInfo field of the issuing CA’s certificate.

6.1.2 Digital Signature Algorithm (DSA)
X.509 certificates specify both the algorithm used to sign the certificate (in the signature
field) and the algorithm of the subject’s public key (in the subjectPublicKeyInfo field). The
Travel System CA shall be able to sign certificates and Certificate Revocation Lists
(CRLs) using the DSA as specified below. End entities shall be able to sign with the DSS
algorithm specified below. Clients shall be able to validate DSS signatures as specified
below.

The Digital Signature Algorithm is defined in FIPS 186, The Digital Signature Standard
[FIPS186]. It shall be used with the SHA-1 hash algorithm. The ASN.1 object identifier
used to identify the DSS algorithm shall be:

dsaWithSHA-1 OBJECT IDENTIFIER ::= {
iso(1) identified-organization(3) oiw(14) secsig(3)
algorithm(2) 27 }

Final

22

The abstract syntax indicating use of the DSA includes optional parameters. These
parameters are commonly referred to as p, q, and g. The AlgorithmIdentifier within
subjectPublicKeyInfo is the only place within a certificate where these parameters shall be
present. If the DSA parameters are absent from the subjectPublicKeyInfo
AlgorithmIdentifier and the CA signed the subject certificate using DSA, then the
certificate issuer's DSA parameters apply to the subject's DSA key. If the DSA algorithm
parameters are absent from the subjectPublicKeyInfo AlgorithmIdentifier and the CA
signed the certificate using a signature algorithm other than DSA, then clients shall not
validate the certificate. The parameters are included using the following ASN.1 structure:

 Dss-Parms ::= SEQUENCE {
 p INTEGER,

q INTEGER,
g INTEGER }

When signing, the DSA algorithm generates two values. These values are commonly
referred to as r and s. To easily transfer these two values as one signature, they shall be
ASN.1 encoded using the following ASN.1 structure:

Dss-Sig-Value ::= SEQUENCE {
r INTEGER,
s INTEGER }

algorithm(2) sha1(26) }

6.1.3 Certificate Extensions
A set of standardized extensions has been developed and is specified in an amendment to
X.509 [DAM]. Extensions have three components: extension name, criticality flag, and
extension value. As specified in the amendment to X.509 [DAM], clients shall not validate
certificates that contain an extension with the criticality flag set, unless the client can
process that extension.

The standardized extensions that have been defined may be divided into four categories:
key and policy information; subject and issuer attributes; certification path constraints;
and CRL identification extensions.

6.1.3.1 Key and Policy Information
These extensions provide information to identify a particular public key and certificate.
They can be used to identify a particular public key/certificate for a CA which has several
certificates. This may help a client to find the particular CA certificate needed to establish
a certification path. These extensions may restrict the purposes for which a key may be
used, and provide information in CA certificates about equivalent policies.

Final

23

Authority Key Identifier

The authorityKeyIdentifier extension provides a means of identifying the particular public
key used to sign a certificate. The identification can be based on either the key identifier
or on the issuer name and serial number. The key identifier method shall be used in
certificates conforming to this interoperability specification. This extension is used where
an issuer has multiple signing keys (either due to multiple concurrent key pairs or due to
changeover). The Travel System CA shall be capable of generating this extension, and
clients shall be capable of finding and validating certification paths where the issuing CA
has several digital signature keys. Clients shall be able to process either the key identifier
or the certificate issuer plus certificate serial number form of key identifier if they use this
extension to find certification paths.

Subject Key Identifier

This field enables differentiation of keys held by a subject. This field shall be included in
every certificate issued. The 160-bit SHA-1 hash of the subject public key shall be used as
the keyidentifier in the subjectKeyIdentifier field used in certificates conforming to this
interoperability specification. The hash shall be calculated over the value (excluding tag
and length) of the subject public key field in the certificate. This extension shall be non-
critical.

Key Usage

The keyUsage extension defines restrictions on the use of the key contained in the
certificate based on policy and/or usage (e.g., signature, encryption). The Travel System
CA shall support the generation of this extension and clients shall be capable of processing
it. This extension shall be set to critical.

Private Key Usage Period

The privateKeyUsagePeriod extension applies only to digital signature keys. A signature
on a document that purports to be dated outside the private key usage period is not valid.
This extension shall not be included in certificates and clients are not required to check
this field.

Certificate Policies

The certificatePolicies extension contains one or more object identifiers (OIDs). Each
OID indicates a policy under which the certificate has been issued. The Travel System CA
shall be able to generate certificates with one or more instances of policyIdentifier . Use of
the policyQualifiers subfield is optional; if used, it shall be used only to provide
information about obtaining CA policy statements.

Clients shall be capable of processing policyIdentifier fields against a list of acceptable
policies. Clients shall compare the policy identifier(s) in the certificate to that list. Clients
shall validate the certification path only if at least one of the policy OIDs in the
certificatePolicies field in each certificate in the path matches one of the policies in the list
of acceptable policies.

Final

24

Policy Mapping

This non-critical extension is used in CA certificates. It lists the OIDs of equivalent
policies. The issuerDomainPolicy is considered to be equivalent to the
subjectDomainPolicy . The Travel System CA shall be capable of generating the
policyMappings extension. Clients shall be capable of processing this extension.

6.1.3.2 Certificate Subject and Issuer Attributes
The subjectAltName , issuerAltName and subjectDirectoryAttributes are all non-critical
extensions. They provide additional information about other names and attributes of the
subject and issuer.

Alternative Name

The subjectAltName and issuerAltName extensions allow additional identities to be bound
to the subject and issuer of the certificate. Defined options include an RFC822 [RFC 822]
name (electronic mail address), a DNS name, and a URL. Multiple instances may be
included. Whenever such identities are to be bound in a certificate, the subjectAltName or
issuerAltName fields shall be used. The Travel System CA shall support the inclusion of
alternative names in certificates.

Although X.509 allows null certificate subject or issuer field accompanied by a critical
subjectAltName or issuerAltName , the Travel System shall not support such certificates.
Clients are not required to process any alternative name format nor need they be able to
process certificates with null subject or issuer fields.

The subjectAltName and issuerAltName extensions are always non-critical in certificates
issued by the Travel System CA. A Travel System client which recognizes these
extensions need not be able to process all the alternatives of the choice. If the alternative
used is not supported by the client, the extension field is ignored.

Subject Directory Attributes

The subjectDirectoryAttributes extension may hold any information about the subject
where that information has a defined X.500 Directory attribute. This extension is always
non-critical. Implementation and use of this extension is optional.

6.1.3.3 Certification Path Constraints
The basicConstraints , nameConstraints and policyConstraints all apply restrictions to
valid certification paths.

Basic Constraints

The basicConstraints extension tells whether the subject of the certificate is a CA through
the cA component and the lengths of certification paths through the pathLenConstraint
component. The Travel System CA shall support the generation of the basicConstraints
extension in certificates and clients shall be capable of processing it. The

Final

25

pathLenConstraint extension is meaningful only if cA is set to TRUE. The cA field shall
be included in all certificates. The basicConstraints extension shall be marked as critical.

Name Constraints

The nameConstraints field applies only to CA certificates. It indicates a name space in
which all subsequent certificates in a certification path must be located. The Travel System
CA shall be capable of including this field in certificates and clients shall be capable of
processing it. If used, it shall be critical.

Policy Constraints

The policyConstraints extension serves two functions. It can require that a specific policy
apply to all or to a portion of the CA path. It can also inhibit policy mapping for all or a
selected portion of the certification path. The Travel System CA shall be capable of
supporting the issuance of certificates with this extension, and clients shall be capable of
processing this extension. If used, it shall be critical.

6.1.3.4 CRL Identification Extensions
These extensions include information in a certificate about where to obtain the Certificate
Revocation List (CRL) that applies to that certificate. They facilitate the division of a
CA’s potentially large CRL into several shorter CRLs, by identifying in the certificate
which CRL applies to a certificate and give the name of the CRL issuer (which may be a
CA other than the CA that issued the certificate).

CRL Distribution Points

The cRLDistributionPoints extension identifies the CRL distribution point or points to
which a clients should refer to ascertain if a certificate has been revoked. This field has
three component fields: distributionPoint , reasons and cRLIssuer .

• The distributionPoint component identifies the location from which the CRL can be
obtained. If this field is absent, the CRL distribution point name defaults to the issuer
name. This extension provides a mechanism to divide the CRL into manageable
pieces if the CA has a large constituency.

• The reasons component identifies the reasons for revocation covered by the CRL
issued by the corresponding distributionPoint . If the reasons component is absent,
the corresponding distributionPoint distributes a CRL which will contain an entry for
this certificate, if it has been revoked for any reason. A reasons value of
certificateHold shall not be used. Clients are not required to process the reasons
component.

• The cRLIssuer component identifies the authority that issues and signs the CRL. If
this component is absent, the CRL issuer name defaults to the certificate issuer name.
One use for this component is to allow the construction of consolidated CRLs, that
include certificates issued by more than one CA.

Final

26

The Travel System CA shall be able to generate the cRLDistributionPoints extension and
all its components in certificates. Clients shall be able to use distribution point CRLs and
validate CRLs where the cRLIssuer component is used. See 6.2 below for a further
discussion of distribution points.

6.1.3.5 Summary of Certificate Extension Use
Table 6-1 summarizes the standardized certificate extensions, while Table 6-2 summarizes
the use of standardized extensions for certificates and clients by the Travel System.

Final

27

Table 6-1 Summary of Standardized Certificate Extensions

Extension Used
By

Use Critical

Key and Policy Information
keyIdentifier all identifies the key used to sign this certificate (the

signing CA may have several keys)
No

authorityKeyIdentifier all unique with respect to authority.
authorityCertIssuer all identifies issuing authority of CA's certificate;

alternative to key identifier
authorityCertSerialNumber all used with authorityCertIssuer

subjectKeyIdentifier all enables differentiation of different keys for same
subject. Must be unique for subject.

No

keyUsage all defines allowed purposes for use of key (e.g.,
digital signature, key agreement...)

Yes*

privateKeyUsagePeriod all digital signature keys only. Signatures on
documents that purport to be dated outside the
period are invalid.

Yes*

certificatePolicies all policy identifiers and qualifiers that identify and
qualify policies applying to the certificate

No*

policyIdentifiers all the OID of a policy.
policyQualifiers all more information about the policy

policyMappings CA indicates equivalent policies No

Certificate Subject and Issuer Attributes
subjectAltName all used to list alternative names (e.g., rfc822 name,

X.400 address, IP address...)
No*

issuerAltName all used to list alternative names No*
subjectDirectoryAttributes all any attributes (e.g., supported algorithms) No

Certification Path Constraints
basicConstraints all constraints on subject's role & path lengths Yes*

cA all distinguish CA from end entity cert.
pathLenConstraint CA max. number of following CAs in cert. path; 0

indicates that CA only issues end entity certs.
nameConstraints CA limits subsequent CA cert. Name space. Yes*

permittedSubtrees CA names outside indicated subtrees are forbidden
excludedSubtrees CA indicates disallowed subtrees

policyConstraints all constrains certs. Issued by subsequent CAs Yes*
policySet all those policies to which constraints apply
requireExplicitPolicy all All certs. following in the cert. path must contain

an acceptable policy identifier
inhibitPolicyMapping all prevent policy mapping in following certs.

CRL Identification
crlDistributionPoints all divides long CRL into shorter lists No*

distributionPoint all location from which CRL can be obtained
reasons all reasons for cert. inclusion in CRL
cRLIssuer all name of component that issues CRL.

NOTES:
* Standard allows either critical or noncritical.

Final

28

Table 6-2 Use of Standardized Certificates by the Travel System

Extension Certificate Client
Key and Policy Information

authorityKeyIdentifier
authorityKeyIdentifier to be included in all certs issued: a

random number large enough to
generally be globally unique

optional - may be used to help
find cert. paths where issuer has
multiple certs. (1)

authorityCertIssuer not used optional - used to find cert. paths
authorityCertSerialNumber not used where issuer has multiple certs.

(1)
subjectKeyIdentifier to be included in all certs issued: a

random number large enough to
generally be globally unique

supported: used with CRLs to
identify revoked certificates.

keyUsage supported supported
privateKeyUsagePeriod supported not used
certificatePolicies

policyIdentifiers supported supported; compared during cert.
path validation with a list of
acceptable policies

policyQualifiers not used supported
policyMappings supported supported

Certificate Subject and Issuer Attributes
subjectAltName supported not used
issuerAltName supported not used
subjectDirectoryAttributes not used not used

Certification Path Constraints
basicConstraints

cA used in all certificates supported
pathLenConstraint supported supported

nameConstraints
permittedSubtrees supported supported
excludedSubtrees supported supported

policyConstraints
policySet supported supported
requireExplicitPolicy supported supported
inhibitPolicyMapping supported supported

CRL Identification
cRLDistributionPoints

distributionPoint supported supported
reasons supported supported
cRLIssuer supported supported

NOTES:
For Certificates, “supported” means that the CA shall be able to issue certificates that contain this extension.
For clients, “supported” means that clients shall be capable of processing this extension.

 (1) Clients shall be capable of finding certification paths where CAs have multiple certificates, whether or
not they use this extension to do so.

Final

29

6.2 Certificate Revocation List (CRL)
Certificate Revocation Lists (CRL) are used to list unexpired certificates that have been
revoked. Certificates may be revoked for a variety of reasons, ranging from routine
administrative revocations, (when the certificate's subject leaves the issuing organization,
or when responsibilities and certificate attributes change), to situations where the private
key is compromised. The X.509 v2 certificate revocation list format is augmented by
several optional extensions, similar in concept to those defined for certificates. The Travel
System CA shall be able to generate X.509 v2 CRLs as specified below, and clients shall
be capable of processing them when validating certification paths. The X.509 v2 CRL
includes the following:

Version
Issuer Signature Algorithm
Issuer Distinguished Name
This Update
Next Update
Revoked Certificates, a sequence of one or more of the following sequence:

Certificate Serial Number
Revocation Date
CRL Entry Extensions (optional)

CRL Extensions (optional)
Issuer’s Signature on all the above listed fields

6.2.1 CRL Fields
The X.509 v2 CRL ASN.1 syntax is given in Appendix B. For signature calculation, the
data that is to be signed is ASN.1 DER encoded. ASN.1 DER encoding is a tag, length,
value encoding system for each element.

The following items describe the use of the X.509 v2 CRL.

Version

This field describes the version of the encoded CRL. The value of this field shall be 1,
indicating a v2 CRL.

Signature

The signature field contains the algorithm identifier for the algorithm used to sign the
CRL. The contents are identical to the contents of the certificate signature field. Refer
to Signature in Section 6.1 for information about this field. CRLs issued by the Travel
System CA are signed with the DSA algorithm. Refer to Section 6.1.2 for the signature
algorithms. The parameters subfield of the CRL signature field shall not be used to pass
DSA parameters; rather DSA parameters shall be obtained from the subjectPublicKeyInfo
field of the certificate of the Travel System CA.

Final

30

Issuer Name

The issuer field provides a globally unique identifier of the CA signing the CRL. The
issuer name is an X.500 distinguished name. CRL issuer names with empty sequences are
not supported by the Travel System CA or its clients.

This Update

The thisUpdate field indicates the date of the CRL. The UTCTime (Coordinated Universal
Time) value included in this field shall follow the rules for the certificate validity field (see
Section 6.1.1 above).

Next Update

The nextUpdate field indicates the date by which the next CRL will be issued. The next
CRL could be issued before the indicated date, but it will not be issued any later than the
indicated date. The UTCTime (Coordinated Universal Time) value included in this field
shall follow the rules for the certificate validity field (see Section 6.1.1 above).

Revoked Certificates

The revokedCertificates field is a list of the certificates that have been revoked. Each
revoked certificate listed contains:

• the certificate serial number, stated in the userCertificate field. This element contains
the value of serialNumber of the revoked certificate. This must be used in conjunction
with the name of the issuing CA to identify an unexpired certificate that has been
revoked.

• the revocationDate field that contains the date of the revocation in UTCTime format.
The UTCTime (Coordinated Universal Time) value included in this field shall follow
the rules for the certificate validity field (see Section 6.1.1 above).

• optional CRL entry extensions, that are specified in Section 6.2.3 below. The CRL
entry extensions may give the reason that the certificate was revoked, state the date
that the invalidity is believed to have occurred, and may state the name of the CA that
issued the revoked certificate, which may be a different CA from the CA issuing the
CRL. Note that the CA that issued the CRL is assumed to be the CA that issued the
revoked certificate unless the certificateIssuer CRL entry extension is included.

6.2.2 CRL Extensions
The extensions defined by ISO/ITU for X.509 v2 CRLs provide methods for associating
additional attributes with entire CRLs. Each CRL extension may be designated as critical
or non-critical. A CRL validation shall fail if a client encounters a critical extension that it
cannot process.

This section describes CRL extensions that shall be supported. A CRL extension is
supported when: the CA is able to generate the extensions in a CRL and the clients are
able to process the extension.

Final

31

Authority Key Identifier

The authorityKeyIdentifier is a non-critical CRL extension that identifies the CA's key used
to sign the CRL. This extension is useful when a CA uses more than one key; it allows
distinct keys differentiated (e.g., as key updating occurs). The identification can be based
on either the key identifier or on the issuer name and serial number. The key identifier
method shall be used, and the keyIdentifier shall be generated for all CRLs. This extension
is useful where an issuer has multiple signing keys (either due to multiple concurrent key
pairs or due to changeover). This extension shall be included in all CRLs, and clients shall
be able to find and validate CRL certification paths where the issuing CA has multiple
signing keys. Clients shall be able to process either the key identifier or the certificate
issuer plus serial number form of authorityKeyIdentifier if they use this extension to find
certification paths.

Issuer Alternative Name

The issuerAltName is a non-critical CRL extension that provides alternative CA names.
Multiple instances may be included. Whenever such alternative names are included in a
CRL, the issuer alternative name field shall be used. Implementations which recognize
this extension need not be able to process all the alternative name formats.
Unrecognized alternative name formats may be ignored by the Travel System CA or its
clients. The Travel System CA shall be capable of generating this extension in CRLs,
however clients are not required to process it.

CRL Number

The cRLNumber field is a non-critical CRL extension which conveys a monotonically
increasing sequence number for each CRL issued by a given CA through a specific CA
directory entry or CRL distribution point. This extension allows certificate users to
easily determine when a particular CRL supersedes another CRL. This extension shall be
included in CRLs.

Issuing Distribution Point

The issuingDistributionPoint field is a critical CRL extension that identifies the CRL
distribution point for this particular CRL. A distribution point is a directory entry that
may be used to retrieve a CRL, and that may differ from the directory entry of the issuing
CA. The CRL is signed by the CA's key. CRL distribution points do not have their own
key pairs.

In addition, the issuingDistributionPoint field specifies CRLs that may contain only end
entity certificates, or only CA certificates, or only certificates that have been revoked for a
particular reason. Finally, this extension can identify an “indirect CRL,” that is a CRL that
is issued by a different CA than the CA(s) that issued the revoked certificate. It contains
the following components:

• distributionPoint , which gives the name of the distribution point name. If used,
distributionPoint shall be an X.500 distinguished name;

Final

32

• onlyContainsUserCerts , a Boolean value that indicates that the CRL contains only end
entity certificates;

• onlyContainsCACerts , a Boolean value that indicates that the CRL contains only CA
certificates;

• onlySomeReasons , a ReasonsFlag bit string that indicates the reasons for which
certificates are listed in the CRL. Only the following reason flags shall be included in
CRLs:

− keyCompromise shall be used to indicate compromise or suspected compromise;

− cACompromise shall be used to indicate that the certificate has been revoked
because of a CA key compromise. It shall only be used to revoke CA certificates;

− affiliationChanged shall be used to indicate that the certificate was revoked
because of a change of affiliation of the certificate subject;

− superseded shall be used to indicate that the certificate has been superseded;

− cessationOfOperation shall be used to indicate that the certificate is no longer
needed for the purpose for which it was issued, but there is no reason to suspect
that the private key has been compromised.

• indirectCRL , a Boolean value that indicates that this is an indirect CRL.

Clients shall be able to process this field. CRLs shall not include an onlySomeReasons
entry that indicates certificateHold .

Delta CRL Indicator

The deltaCRLIndicator is a critical CRL extension that identifies a delta-CRL. The use
of delta-CRLs can significantly improve processing time for applications which store
revocation information in a format other than the CRL structure. This allows changes to
be added to the local database while ignoring unchanged information that is already in
the local database.

The value of BaseCRLNumber identifies the CRL number of the base CRL that was used
as the starting point in the generation of this delta-CRL. The delta-CRL contains the
changes between the base CRL and the current CRL. A delta-CRL is not issued by itself;
if a delta-CRL is issued a complete current CRL is also issued. It is the decision of a CA
as to whether to provide delta-CRLs. A delta-CRL shall not be issued without a
corresponding base CRL. The value of CRL number for both the delta-CRL and the
corresponding base CRL shall be identical.

A client constructing a locally held CRL from delta-CRLs shall consider the constructed
CRL incomplete and unusable if the CRL number of the received delta-CRL is more that
one greater that the CRL number of the delta-CRL last processed. Support of delta-CRLs
by the Travel System CA and clients is optional.

Summary of CRL Extension Use

Table 6-3 summarizes the standardized CRL extensions, while Table 6-4 summarizes the
use of the standardized CRL extensions for the Travel System.

Final

33

6.2.3 CRL Entry Extensions
The CRL entry extensions defined for X.509 v2 CRLs provide methods for associating
additional attributes with CRL entries. Each extension in a CRL entry is designated as
critical or non-critical. A CRL validation shall fail if it encounters a critical CRL entry
extension which it does not know how to process. However, an unrecognized non-critical
CRL entry extension may be ignored.

Table 6-3 Summary of CRL Extensions

Extension Use Critical
 authorityKeyIdentifier identifies the CA key used to sign CRL. No
 keyIdentifier unique key identifier; alternative to

certIssuer & authorityCertSerialNumber
 certIssuer name of CA’s cert. issuer
 authorityCertSerialNumber used with certIssuer ; combination must be

unique
 issuerAltName alternate name of CRL issuer No*
 cRLNumber sequence number for CRL No
 issuingDistributionPoint name of CRL distribution point; also gives

reasons for revocations contained in CRL.
Yes

 deltaCRLIndicator indicates delta CRL (lists certificates.
revoked since last full CRL) & gives
sequence number

Yes

NOTES:
* Standard allows either critical or noncritical. Indication is for use in the DoE Travel System.

Final

34

Reason Code

The reasonCode is a non-critical CRL entry extension that identifies the reason for the
certificate revocation. The Travel System CA shall be capable of generating this extension
in CRL entries. Processing of the reasonCode extension by clients is optional, that is
clients shall not validate a certificate if any certificate in the certification path is listed in a
current CRL, regardless of the reasonCode, and need not provide operator information
about the reason for failure. The following enumerated reasonCode values are defined:

• unspecified ; this value shall not be used;
• keyCompromise indicates compromise or suspected compromise;
• cACompromise indicates that the certificate has been revoked because of a CA key

compromise. It shall only be used to revoke CA certificates;
• affiliationChanged indicates that the certificate was revoked because of a change of

affiliation of the certificate subject;
• superseded indicates that the certificate has been replaced by a more recent

certificate;

Table 6-4 Summary of CRL Extensions and their use in the Travel System

Extension CRL Clients
 authorityKeyIdentifier

 keyIdentifier included in all CRLs issued optional - used to help find
correct CA certificate to
validate CRL (1)

 certIssuer not generated optional - issuer/serial number
pair used to help find correct
authority certificate to validate
CRL (1)

 certSerialNumber not generated
 issuerAltName supported optional
 cRLNumber supported: included in all

CRLs
optional

 issuingDistributionPoint supported supported
 deltaCRLIndicator optional optional

NOTES:
• For CRLs, “supported” means that the CA is capable of issuing CRLs that contain this extension.

• For Clients, “supported” means that the client is capable of processing this extension in CRLs.

(1) Clients shall be capable of finding the certificate used to sign a CRL, when the CA has multiple
certificates, and the certificates are accessible in the appropriate directory, whether or not they use this
extension to do so, and whether or not the CRL contains this extension.

Final

35

• cessationOfOperation indicates that the certificate is no longer needed for the purpose
for which it was issued, but there is no reason to suspect that the private key has been
compromised.

• certificateHold shall not be used. When clients process a certificate that is listed in a
CRL with a reasonCode of certificateHold , they shall fail to validate the certification
path.

• removeFromCRL , which is used only with delta-CRLs and indicates that an existing
CRL entry should be removed.

Expiration Date

The expirationDate is a non-critical CRL entry extension that indicates the expiration of a
hold entry in a CRL. This extension shall not be used in CRLs or by clients.

Instruction Code

The instructionCode is a non-critical CRL entry extension that provides a registered
instruction identifier which indicates the action to be taken after encountering a certificate
that has been placed on hold. This extension shall not be used in CRLs.

Invalidity Date

The invalidityDate is a non-critical CRL entry extension that provides the date on which it
is known or suspected that the private key was compromised or that the certificate
otherwise became invalid. This date may be earlier than the revocation date in the CRL
entry. The revocation date in the CRL entry specifies the date that the CA revoked the
certificate. Whenever this information is available, CAs are encouraged to share it with
CRL users. The Travel System CA shall be capable of generating this extension in CRLs.
The UTCTime (Coordinated Universal Time) value included in this field shall follow the
rules for the certificate validity field (see Section 6.1.1 above).

Certificate Issuer

The certificateIssuer CRL entry extension is used with an indirect CRL (a CRL that has
the indirectCRL indicator set in its issuingDistributionPoint extension). If this extension is
not present in the first entry of an indirect CRL, the certificate issuer defaults to the CRL
issuer. In subsequent entries in an indirect CRL, when the certificateIssuer extension is
not present, the certificate issuer is the same as the issuer of the preceding CRL entry.

Summary of CRL Entry Extension Use

Table 6-5 summarizes the CRL entry extensions while Table 6-6 summarizes the use of
CRL entry extensions for the DoE Travel System.

Final

36

6.3 Certification Path Validation
The procedure specified in Section 12.4.3 of the DAM [DAM], Certification path
processing procedure, shall be adopted by clients with the following modifications:

• The default value for input (d) initial-explicit-policy indicator shall indicate a specific
acceptable policy identifier that must appear in the certificate policies extension of
every certificate in the certification path;

• The default value for input (e) initial-policy-mapping-inhibit shall be TRUE, i.e.,
policy mapping need not be allowed in complying implementations;

• The diagnostic codes provided upon failure of certification path validation in output
(b) shall be provided by the contractor.

• Information provided upon success of a path validation in output (c) is optional for
complying implementations;

• Policy mapping information in output (e) is optional;
• Support for pending-constraints state information is optional.

Table 6-5 Summary of CRL Entry Extensions

 Extension Use Critical
 reasonCode identifies the reason for the revocation of

this certificate
 No

 instructionCode used with certificateHold reasonCode ;
indicates action to be taken when
encountering a held certificate

 No

 invalidityDate date certificate became invalid No
 certificateIssuer Issuer of revoked certificate in an indirect

CRL
 Yes

Table 6-6 Summary of CRL Entry Extensions Use in the DoE Travel System

 Extension CRL Clients
 reasonCode supported; included for all

entries; certificateHold not used
 optional - may be used to
provide information about
validation failure

 instructionCode not used optional
 invalidityDate supported optional - may be used to

provide information about
validation failure

 certificateIssuer supported supported

NOTES
For CRLs, “supported” means the CA is capable of issuing CRLs that contain this CRL entry extension. For
clients, “supported” means that the client is capable of processing this entry extension in CRLs.

Final

37

6.4 Transaction Message Formats
This section presents a set of message formats to support the minimal set of PKI
transactions. Systems that implement these transactions shall support these message
formats, generating and recognizing them as appropriate. The message formats are
specified in ASN.1; messages shall be encoded and transmitted using the Distinguished
Encoding Rules (DER).

6.4.1 Overall PKI Message Components

PKI Message

Each message has three components

PKIMessage ::= SEQUENCE {
 header PKIHeader,
 body PKIBody,
 protection PKIProtection
 }

PKI Message Header

All PKI messages require some header information for addressing and transaction
identification. Some of this information will also be present in a transport specific
envelope, however, if the PKI message is signed then this information is also protected
(i.e. we make no assumption about secure transport).

The following data structure is used to contain this information:

 PKIHeader ::= SEQUENCE {
 pvno INTEGER { fpki-version1 (0) },
 messageType MessageType,
 transactionID [1] OCTET STRING OPTIONAL,
 -- identifies the transaction, i.e. this will be the
 -- same in corresponding request, response and
 -- confirmation messages
 messageID [2] OCTET STRING OPTIONAL,
 -- identifies this message uniquely (if needed)
 senderNonce [3] OCTET STRING OPTIONAL,
 recipNonce [4] OCTET STRING OPTIONAL,
 -- nonces used to provide replay protection, senderNonce
 -- is inserted by the creator of this message; recipNonce
 -- is a nonce previously inserted in a related message by
 -- the intended recipient of this message
 messageTime UTCTime OPTIONAL,
 -- time of production of this message
 sender GeneralName,
 -- identifies the sender for addressing purposes
 recipient GeneralName,
 -- identifies the intended recipient for
 -- addressing purposes
 protectionAlg AlgorithmIdentifier OPTIONAL,
 -- to include the alg. in e.g. signature calculation
 freeText CHOICE {

Final

38

 IA5String,
 BNPString } OPTIONAL
 -- this may be used to indicate context specific
 -- instructions - this field is intended for human
 -- consumption
 }

 MessageType ::= INTEGER {
CertReq (2), -- message asking for a cert.
CertRep (3), -- response to above
KeyUpdReq (4), -- msg. asking for cert for new public key
KeyUpdRep (5) -- response to above
RevReq (8), -- message asking for revocation
RevRep (9), -- response to above
PKIConfirm (16), -- used for confirmation (ACK)
PKIEnvelope (18) -- used for doubly signed messages

 }

The transactionID field within the message header is required so that the recipient of a
response message can correlate this with the request. In the case of an ORA there may be
many request "outstanding" at a given moment. The value of this field should be unique
from the sender's perspective in order to be useful.

The messageTime field indicates the time the message was generated. The UTCTime
(Coordinated Universal Time) value included in this field shall follow the rules for the
certificate validity field (see Section 6.1.1 above).

The sender and recipient fields within the message header are defined as GeneralName .
Systems are required to support X.500 distinguished names and RFC 822 (Internet
electronic mail) names.

The protectionAlg is required for all signed messages. The messageID , senderNonce , and
recipNonce fields are not required.

PKI Message Body

 PKIBody ::= CHOICE {
 -- message specific body elements
 [2] CertReqContent,
 [3] CertRepContent,
 [4] KeyUpdReqContent,
 [5] KeyUpdRepContent,
 [8] RevReqContent,
 [9] RevRepContent,

[16] PKIConfirmContent,
[18] InnerMessage

 }

PKI Message Protection

Some PKI messages will be protected for integrity. In that case the following structure is
used:

Final

39

 PKIProtection ::= SEQUENCE {
 alg AlgorithmIdentifier OPTIONAL,
 -- when both are present this should be the same as the
 -- protectionAlg field of the PKIHeader
 protectionBits BIT STRING
 }

The input to the calculation of the protectionBits is the DER encoding of the following
data structure:

 ProtectedPart ::= SEQUENCE {
 PKIHeader,
 PKIBody}

Note that this is equivalent to the ASN.1 notation:

 PKIProtection ::= SIGNATURE SEQUENCE {
 PKIHeader,
 PKIBody}

In some cases, such as key update, it may be necessary to attach multiple signatures. In
this case, signatures are applied iteratively - each signed message becomes the body of a
PKIMessage of type PKIEnvelope , until all signatures have been applied.

6.4.2 Common Data Structures
The following data types are common to several message formats.

Certificate Templates

In various PKI management messages, the originator may provide certain values to
identify an existing certificate or request certain values be used in the generation of a
certificate. The CertTemplate structure allows entities to indicate those values.
CertTemplate includes all the same information as a certificate.

The CertTemplates structure is a sequence of CertTemplate . This structure permits “batch
processing” of requests in a single transaction. Since this may also be performed through
a series of transactions, this feature is not required. CertTemplates may be considered a
sequence of exactly one CertTemplate wherever it appears.

 CertTemplate ::= SEQUENCE {
 version [0] Version OPTIONAL,
 -- used to ask for a particular syntax version
 serial [1] INTEGER OPTIONAL,
 -- used to ask for a particular serial number
 signingAlg [2] AlgorithmIdentifier OPTIONAL,
 subject [3] Name OPTIONAL,
 validity [4] OptionalValidity OPTIONAL, -- policy
 issuer [5] Name OPTIONAL,
 publicKey [6] SubjectPublicKeyInfo OPTIONAL, -- required
 issuerUID [7] UniqueIdentifier OPTIONAL, -- not supported
 subjectUID [8] UniqueIdentifier OPTIONAL, -- not supported
 extensions [9] Extensions OPTIONAL,

Final

40

 -- contains the extensions which the requester
 -- would like in the cert.
 }

 OptionalValidity ::= SEQUENCE {
notBefore [0] UTCTime OPTIONAL,
notAfter [1] UTCTime OPTIONAL

 }

CertTemplates ::= SEQUENCE OF CertTemplate

Status codes for PKI messages

All response messages will include some status information. The following values are
defined:

PKIStatus ::= INTEGER {
granted (0),

 -- request granted without change
grantedWithMods (1),

 -- request granted, with modifications; the requester
 -- is responsible for ascertaining the differences

rejection (2),
 -- request rejected

waiting (3),
 -- the request has been received but has not been processed,
 -- an additional response will follow after processing

revocationWarning (4),
 -- this message contains a warning that a revocation is
 -- imminent

revocationNotification (5)
 -- notification that a revocation has occurred
 }

Failure Information

Responders use the following syntax to provide more information about failure cases.

 PKIFailureInfo ::= BIT STRING { -- since we can fail in more than
 -- one way!

badAlg (0), -- unrecognized or unsupported algorithm identifier
badMessageCheck (1), -- integrity check failed (signature did not verify)
badRequest (2), -- transaction not permitted or supported
badTime (3), -- messageTime field was not sufficiently close

-- to the system time
badCertId (4) -- no certificate could be identified matching the

-- provided criteria
-- need more failure information

 }

Protocol Confirmation

This data structure has no content in all cases. Confirmation messages shall carry all the
required information in the PKIHeader .

 PKIConfirmContent ::= NULL

Final

41

Certificate Identification

In order to identify particular certificates the CertId structure is used.

 CertId ::= SEQUENCE {
 issuer GeneralName,
 serialNumber INTEGER
 }

6.4.3 Operation-Specific Data Structures

Registration/Certification Request

Registration/Certification request message (CertReq) contains a CertReqContent data
structure which specifies values for one or more requested certificates.

CertReqContent ::= CertTemplates

The certificate request body shall include the prospective certificate holder's distinguished
name and public key in the subject and publicKey fields.

Registration/Certification Response

A registration response message (CertRep) contains a CertRepContent structure which has
a status value and optionally failure information, a CA public key, subject certificate and
encrypted private key.

 CertRepContent ::= SEQUENCE {
status PKIStatus,
failInfo [0] PKIFailInfo OPTIONAL, -- present if status is rejection
caPub [1] OOBCert OPTIONAL,
certificate [2] Certificate OPTIONAL, -- present if status is granted or

-- grantedWithMods
privateKey [3] EncPrivKey OPTIONAL -- not required

 }

Only one of the failInfo or certificate should be present (depending on the status). For the
status values waiting none of the optional fields will be present. The status values
revocationWarning and revocationNotification should not appear in this message.

For the DoE Travel System, the privateKey field shall not be used. The caPub field is not
required, and may be ignored if present.

Revocation Request Content

When requesting revocation of a certificate the following data structure is used. The name
of the requester is present in the PKIHeader structure.

RevReqContent ::= SEQUENCE {
 certDetails CertReqContent,
 -- allows requester to specify as much as they can about
 -- the cert. for which revocation is requested
 -- (e.g. for case serialNumber not available)
 revocationReasonReasonFlags,
 -- from the DAM, so that CA knows which Dist. point to use

Final

42

 badSinceDate UTCTime OPTIONAL,
 -- indicates best knowledge of sender
 crlEntryDetails Extensions}
 -- requested crlEntryExtensions

ReasonFlags are defined in Appendix B. but are reproduced here for clarity.

ReasonFlags ::= BIT STRING {
unused (0),
keyCompromise (1),
caCompromise (2),
affiliationChanged (3),
superseded (4),
cessationOfOperation (5),
certificateHold (6),
removeFromCRL (8) }

Revocation Response Content

The response to the above message. If produced this is sent to the requester of the
revocation. (A separate revocation announcement message may be sent to the subject of
the certificate which was requested to be revoked.)

RevRepContent ::= SEQUENCE {
 status PKIStatus,
 failInfo PKIFailInfo OPTIONAL,
 revDetails [0] CertId OPTIONAL,
 -- identifies the cert for which revocation
 -- was requested
 cRL [1] CertificateList OPTIONAL}
 -- the resulting CRL

 Key update request content

For certificate renewal transactions performed directly between certificate holders and
CAs, the following syntax is used

KeyUpdReqContent ::= SEQUENCE {
 endEntityName GeneralName,
 latestCerts SEQUENCE OF CertId,
 protocolEncKey [1] SubjectPublicKeyInfo OPTIONAL,
 certTemplates [2] CertTemplates OPTIONAL
}

In the DoE Travel System, latestCerts shall be a sequence of exactly one CertId . If the
endEntityName is an X.500 distinguished name, it will correspond to the subject field in
the certificate. Otherwise, the endEntityName field will specify the RFC822 electronic mail
address for the end entity and can be used to support communications protocols. The
ProtocolEncKey field conveys the new public key for the new certificate.7 The
certTemplates includes proposed values for any modifications in the certificate fields. If
omitted, the only fields that will change are the public key and the validity period.

7 If omitted, the user is requesting a new certificate with the same key. It is a policy decision if such a
request will be honored.

Final

43

Key Update response content

This is just like any other certification response.

KeyUpdRepContent ::= InitRepContent

InitRepContent ::= SEQUENCE {
referenceNum INTEGER,
protocolEncKey [0] SubjectPublicKeyInfo OPTIONAL,
certTemplates CertTemplates

}

6.5 PKI Transactions
This section describes PKI specific transactions to request, renew, or revoke certificates;
the transactions are based on the working document [PKIX3]. This section also provides a
brief description of transactions for accessing the directory service.

6.5.1 Initial Certificate Issuance
An ORA may request that the Travel System CA issue a certificate for an end entity. This
transaction is performed in three steps. In the first step, the end entity provides a public
key to the ORA in a signed message. In the second step, the ORA requests a certificate
from the CA in a signed message. The CA replies to the ORA with a signed message
containing either a certificate or an error message.

Certificate Request from an End Entity to the ORA

The end entity creates a PKIMessage of type CertReq . The PKIHeader includes the
following information:

• pvno is zero;
• messageType is CertReq ;
• messageTime is the current time with a granularity of minutes;
• sender is the distinguished name of the end entity, or null;
• recipient is the distinguished name of the ORA; and
• protectionAlg is the algorithm identifier for the signature algorithm used to protect the

message.
The message body is CertReqContent , which is a sequence of one or more CertTemplate .
For the DoE Travel System, CertReqContent is a sequence of one CertTemplate . At a
minimum, the CertTemplate will include the publickey field, which provides the public key
for the new certificate.

The PKIProtection field contains the end entity’s signature, calculated on the DER
encoded sequence of the header and body with private key material corresponding to the
public key in the publickey field.

Certificate Request from ORA to CA

The ORA creates a PKIMessage of type CertReq . The PKIHeader includes the following
information:

Final

44

• pvno is zero;
• messageType is CertReq ;
• transactionID is an integer unique to this transaction for this ORA;
• messageTime is the current time with a granularity of minutes;
• sender is the distinguished name of the ORA;
• recipient is the distinguished name of the CA; and
• protectionAlg is the algorithm identifier for the signature algorithm used to protect the

message.

The message body is CertReqContent , which is a sequence of one or more CertTemplate .
For the DoE Travel System, CertReqContent is a sequence of one CertTemplate . The
CertTemplate will include the following information:

• version is v3 (which is indicated by a value of 2);
• serial is used as described below;
• publickey provides the public key for the new certificate; and
• extensions specifies, at a minimum, the certificate policy OID to be associated with

the certificate.

The serial field may be set to zero, indicating that the end entity has not previously held a
certificate issued by this CA. A non-zero value for serial is the serial number for an
unexpired, unrevoked certificate issued to this entity by recipient .

The following information may be included in the CertTemplate :

• signingAlg specifies the preferred signature algorithm;
• subject is present if and only if serial equals zero, and specifies the distinguished name

for the prospective certificate holder;

The request shall not include the following information:

• issuerUID ; and
• subjectUID .

The PKIProtection field contains the ORA’s signature, calculated on the DER encoded
sequence of the header and body.

Certificate Response from CA to ORA

The CA will return a CertRep message to the ORA.

The PKIHeader includes the following information:

• pvno is zero;
• messageType is CertRep ;
• transactionID is the same as the transactionID field in the CertReq message;
• messageTime is the current time with a granularity of minutes;
• sender is the distinguished name of the CA;
• recipient is the distinguished name of the ORA; and

Final

45

• protectionAlg is the algorithm identifier for the signature algorithm used to protect the
message.

The PKIBody is CertRepContent . If the CA issued a certificate, the body will contain the
following information:

• status will be granted or grantedWithMods ; and
• certificate will contain the X.509 version 3 certificate;

The failInfo field may not be present if status is granted or grantedWithMods .

If the CA rejected the request, the body shall include the following information:

• status will be rejected ; and
• failinfo will contain the appropriate failure codes:

− badAlg indicates that the CA cannot validate the signature because the algorithm
identifier is unrecognized or unsupported;

− badMessageCheck indicates that the signature in the PKIProtection field was
checked but did not match;

− badRequest indicates that the responder does not permit or support the
transaction;

− badTime indicates that the messageTime field in the message header was not
sufficiently close to the responder’s system time; and

− badCertId indicates that no certificate could be identified matching the non-zero
serial field, or that the corresponding certificate was revoked or expired.

The certificate field may not be present if status is rejected . If present, the certificate shall
conform to the profile presented in Section 6.1.

The PKIProtection field contains the CA’s signature, calculated on the DER encoded
sequence of the header and body.

6.5.2 Certificate Renewal
An entity that is a current certificate holder may request issuance of a new certificate
directly from the CA that issued the current certificate. The requesting entity creates a PKI
KeyUpdReq message requesting a certificate and signs it with the private key
corresponding to the public key in the certificate request. The entity then encapsulates the
signed message in a PKIEnvelope message which it signs with the private key
corresponding to the entity’s unexpired, unrevoked certificate.

The Travel System CA shall return a KeyUpdRep message to the certificate holder. This
message will contain the certificate or a reason code for the transaction failure.

Certificate Renewal Request from Certificate Holder to CA

The certificate holder creates a PKIMessage of type KeyUpdReq . The PKIHeader includes
the following information:

• pvno is zero;
• messageType is KeyUpdReq ;

Final

46

• messageTime is the current time with a granularity of minutes;
• sender is the distinguished name of the certificate holder;
• recipient is the distinguished name of the CA; and
• protectionAlg is the algorithm identifier for the signature algorithm used to protect the

message.

The PKIBody is KeyUpdReqContent , which is a sequence of endEntityName , latestCerts ,
ProtocolEncKey , and CertTemplates . For the DoE Travel System, latestCerts is a
sequence of one CertId and CertTemplates is a sequence of one CertTemplate . The CertId
shall be present and shall identify an unexpired unrevoked certificate issued by the
recipient identified in the message header.

If present, the CertTemplate may include the following information:

• version of the certificate to be issued;
• publickey provides the public key for the new certificate.
• signingAlg specifies the preferred signature algorithm.

The CertTemplate shall not include the following information:

• issuerUID ; and
• subjectUID .

The PKIProtection field contains a signature generated with the private key associated
with the public key specified in the CertTemplate and calculated on the DER encoded
sequence of the header and body.

This entire message becomes the body of a PKIMessage of type PKIEnvelope , and is
signed with the private key associated with the public key in ProtocolEncKey .

Envelope for Renewal Request

The certificate holder now creates a PKIMessage of type PKIEnvelope . The PKIHeader
includes the following information:

• pvno is zero;
• messageType is PKIEnvelope
• messageTime is the current time with a granularity of minutes;
• sender is the distinguished name of the certificate holder;
• recipient is the distinguished name of the CA; and
• protectionAlg is the algorithm identifier for the signature algorithm used to protect the

message.

The PKIBody is the PKIMessage of type KeyUpdReq constructed above.

The PKIProtection field contains a signature generated using the private key associated
with the current unexpired, unrevoked certificate and calculated upon the DER encoded
sequence of the header and body.

Final

47

Certificate Renewal Response from CA to Certificate Holder

The CA will return a KeyUpdRep message to the certificate holder.

The PKIHeader includes the following information:

• pvno is zero;
• messageType is CertRep ;
• messageTime is the current time with a granularity of minutes;
• sender is the distinguished name of the CA;
• recipient is the distinguished name of the ORA; and
• protectionAlg is the algorithm identifier for the signature algorithm used to protect the

message.

If a transactionID was supplied in CertReq message, the header of the response will
include the same transactionID .

The PKIBody is CertRepContent . If the CA issued a certificate, the body will contain the
following information:

• status will be granted or grantedWithMods ; and
• certificate will contain the new X.509 version 3 certificate;

The failinfo field may not be present if status is granted or grantedWithMods .

If the CA rejected the request, the body shall include the following information:

• status will be rejected ; and
• failinfo will contain the appropriate failure codes:

− badAlg indicates that the CA cannot validate the signature because the algorithm
identifier is unrecognized or unsupported;

− badMessageCheck indicates that the signature in the PKIProtection field was
checked but did not match;

− badRequest indicates that the responder does not permit or support the
transaction;

− badTime indicates that the messageTime field in the message header was not
sufficiently close to the responder’s system time; and

− badCertId indicates that no certificate could be identified matching the non-zero
serial field.

The certificate field may not be present if status is rejected . If present, the certificate shall
conform to the profile presented in Section 6.1.

The PKIProtection field contains the CA’s signature, calculated on the DER encoded
sequence of the header and body.

6.5.3 Request Revocation
Certificate holders may request revocation of their own certificates. To perform this
function the certificate holder generates a RevReq message, signs it with the certificate to
be revoked, and sends it to the CA. The RevReq message shall include, at a minimum, the

Final

48

certificate serial number in the serial field of certDetails and a revocation reason code in
the revocationReason field. The CA responds with a RevRep message.

ORAs may request revocation of a certificate issued to an entity on behalf of the
certificate holder or the certificate holder’s organization. To perform this function, the
ORA generates a RevReq message, signs it with the ORA’s private key, and sends it to
the CA. The ORA shall generate a pseudo-random number and shall place it in the
transactionID field. The RevReq message shall include, at a minimum, the certificate serial
number in the serial field of certDetails and a revocation reason code in the
revocationReason field.

The CA will respond to the revocation requester with a RevRep message. If the RevReq
message includes a transactionID , the CA shall include its contents as the transactionID in
the RevRep message. The RevRep message shall contain, at a minimum, provide the status
of the revocation request in the status field and identify the certificate for which revocation
is requested in the revDetails field.

Revocation Request from ORA or Certificate Holder to CA

The ORA or the certificate holder creates a PKIMessage of type RevReq . The PKIHeader
includes the following information:

• pvno is zero;
• messageType is RevReq ;
• transactionID is an integer unique to this transaction for this ORA or any integer for

the end entity;
• messageTime is the current time with a granularity of minutes;
• sender is the distinguished name of the ORA or the certificate holder;
• recipient is the distinguished name of the CA; and
• protectionAlg is the algorithm identifier for the signature algorithm used to protect the

message.

The PKIBody is RevReqContent , which is a sequence of CertDetails , reason flags, and date
and time of compromise or loss. CertDetails is defined as a sequence of CertTemplate . For
the DoE Travel System, CertDetails is a sequence of one CertTemplate , which will include
the following information:

• serial , which contains the serial number of the certificate; and
• issuer , which contains the distinguished name of the certificate issuer.
or
• subject , which contains the distinguished name of the certificate holder; and
• issuer , which contains the distinguished name of the certificate issuer.

The RevDetails shall also include a reason code, and may include badSinceDate to specify
the time after which the certificate should not be trusted.

The PKIProtection field contains the requestor’s signature, calculated on the DER
encoded sequence of the header and body.

Final

49

Revocation Response from CA to Requester

The CA will return a RevRep message to the requester. 8

The PKIHeader includes the following information:

• pvno is zero;
• messageType is RevRep ;
• transactionID is the same as the transactionID field in the CertReq message;
• messageTime is the current time with a granularity of minutes;
• sender is the distinguished name of the CA;
• recipient is the distinguished name of the ORA; and
• protectionAlg is the algorithm identifier for the signature algorithm used to protect the

message.

The PKIBody is RevRepContent . If the CA revoked the certificate, the body will contain
the following information:

• status will be granted or grantedWithMods ; and
• revDetails will contain the CertId of the revoked certificate;

The failinfo field may not be present if status is granted or grantedWithMods .

If the CA rejected the request, the body shall include the following information:

• status will be rejected ; and
• failinfo will contain the appropriate failure codes:

− badAlg indicates that the CA cannot validate one of the signatures because the
algorithm identifier is unrecognized or unsupported;

− badMessageCheck indicates that the one of the signatures in the PKIProtection
fields was checked but did not match;

− badRequest indicates that the responder does not permit or support the
transaction;

− badTime indicates that the messageTime field in the message header was not
sufficiently close to the responder’s system time; or

− badCertId indicates that the information in latestCerts did not identify an
unexpired, unrevoked certificate.

If the certificate in question can be determined, revDetails will contain the CertId of the
certificate whose revocation was rejected.

The PKIProtection field shall contain the CA’s signature, calculated on the DER encoded
sequence of the header and body.

6.5.4 Request Certificate from Directory
Entities may request certificates from the directory using LDAP and the matching rules
certificate exact match and certificate match, as defined in [DAM].

8 If the requester is an ORA, the CA may optionally send the RevRep message to the certificate holder as
well.

Final

50

6.5.5 Request Certificate Pair from Directory
Entities may request certificate pairs from the directory using LDAP and the certificate
pair match rule, as defined in [DAM].

6.5.6 Request CRL from Directory

Entities may request CRLs from the directory using LDAP, the certificate list match rule,
and the algorithm identifier match rule, as defined in [DAM].

6.5.7 Publish Certificate
CAs may publish a certificate they issued, or that was issued to them, in the directory.

For X.500 directory service, the CA will use DAP with strong authentication to bind to
the directory.

6.5.8 Publish Cross Certificate
CAs may publish a cross certificates in the directory. Cross certificates may be added as
attributes of the subject of the forward or reverse certificate.

For X.500 directory service, the CA will use DAP with strong authentication to bind to
the directory.

6.5.9 Publish CRLs
CAs may publish CRLs in the directory.

For X.500 directory service, the CA will use DAP with strong authentication to bind to
the directory.

7. References

[COR95] ISO/IEC JTC 1/SC 21/WG 4, Technical Corrigendum 2 to ISO/IEC 9594-
8 : 1990 & 1993 (1995:E). July 1995.

[DAM] ISO/IEC JTC 1/SC 21/WG 4, Draft Amendments DAM 4 to ISO/IEC
9594-2, DAM 2 to ISO/IEC 9594-6, DAM 1 to ISO/IEC 9594-7, and
DAM 1 to ISO/IEC 9594-8 on Certificate Extensions, June 30, 1996.

[FIPS140] FIPS PUB 140-1, Security Requirements for Cryptographic Modules,
NIST, January 1994.

[FIPS180] FIPS PUB 180-1, Secure Hash Standard, NIST, April 1995.

[FIPS186] FIPS PUB 186, Digital Signature Standard, NIST, May 1994.

[FIPS46] FIPS PUB 46-2, Data Encryption Standard, December 1993.

[FIPS81] FIPS PUB 81, DES Modes of Operation, NIST, December 1980.

Final

51

[GCS] X/Open Preliminary Specification P442. June, 1996.

[ISO88] ISO/IEC 9594-8 (1988:E), CCITT Information Technology - Open
Systems Interconnection - The Directory: Authentication Framework.
Standard X.509, 1988.

[ISO94-6] ISO/IEC 9594-6 (1994), Open Systems Interconnection - The Directory:
Protocol Specifications. 1994.

[ISO94-8] ISO/IEC 9594-8 (1994), Open Systems Interconnection - The Directory:
Authentication Framework. 1994. The 1994 edition of this document has
been amended by the Draft Amendments [DAM] and a Technical
Corrigendum [COR95].

 [PKIX1] Internet Draft, Internet Public Key Infrastructure Part I: X.509
Certificate and CRL Profile, R Housley, W. Ford and D. Solo, June 1996.
working draft “in progress” available at: ftp://ds.internic.net/internet-
drafts/draft-ietf-pkix-ipki-part1-02.txt

[PKIX3] Internet Draft, Internet Public Key Infrastructure Part III: Certificate
Management Protocols, S. Farrell, C. Adams and W. Ford, working draft
“in progress” available at: ftp://ds.internic.net/internet-drafts/draft-ietf-
pkix-ipki3cmp-00.txt

 [RFC822] RFC 822, Standard for the Format of ARPA Internet Text Messages,
David H. Crocker, August 13, 1982

 [RFC1777] RFC 1777, Lightweight Directory Access Protocol, Ed Yeoung, Howes,
and Killie. March 1995.

[STAB95] OIW, Stable Implementation Agreements for Open Systems
Interconnection Protocols: Part 12 - OS Security. June 1995.

[X9.55] Draft American National Standard X9.55-1995, Public Key Cryptography
for the Financial Services Industry: Extensions to Public Key Certificates
and Certificate Revocation Lists, Nov. 11, 1995

Final

52

Appendix A - X.509 v3 Certificate ASN.1

AuthenticationFramework {joint-iso-ccitt ds(5) modules(1) authenticationFramework(7) 2}
DEFINITIONS ::=
BEGIN

-- EXPORTS All --
-- The types and values defined in this module are exported for use in the other ASN.1
-- modules contained within the Directory Specifications, and for the use of other applications
-- which will use them to access Directory services. Other applications may use them for
 -- their own purposes, but this will not constrain extensions and modifications needed to
 -- maintain or improve the Directory service.

IMPORTS
id-at, informationFramework, upperBounds selectedAttributeTypes,

basicAccessControl FROM UsefulDefinitions {joint-iso-ccitt ds(5)
modules(1) usefulDefinitions(0) 2}

Name, ATTRIBUTE
FROM InformationFramework informationFramework

ub-user-password
FROM UpperBounds upperBounds

AuthenticationLevel
FROM BasicAccessControl basicAccessControl

UniqueIdentifier
FROM SelectedAttributeTypes selectedAttributeTypes ;

-- types --

Certificate ::= SIGNED {SEQUENCE{
version [0] Version DEFAULT v1,
serialNumber CertificateSerialNumber,
signature AlgorithmIdentifier,
issuer Name,
validity Validity,
subject Name,
subjectPublicKeyInfo SubjectPublicKeyInfo}
issuerUniqueIdentifier [1] IMPLICIT UniqueIdentifier OPTIONAL,

---if present, version must be v1 or v2--
subjectUniqueIdentifier [2] IMPLICIT UniqueIdentifier OPTIONAL,

---if present, version must be v1 or v2--
extensions [3] Extensions Optional

--if present, version must be v3--} }

 Version ::= INTEGER {v1(0), v2(1), v3(2) }

CertificateSerialNumber ::= INTEGER
Algorithmidentifier ::= SEQUENCE{

algorithm ALGORITHM.&id({SupportedAlgorithms}),
parameters ALGORITHM.&Type (SupportedAlgorithms}{ @algorithm}) OPTIONAL
}

Final

53

-- Definition of the following information object is deferred, perhaps to standardized
-- profiles of to protocol implementation conformance statements. This set is required to
-- specify a table constraint on the Parameters component of Algorithmidentifier .
-- SupportedAlgorithms ALGORITHM ::= { ...|... }

 Validity ::= SEQUENCE{
notBefore UTCTime,
notAfter UTCTime}

 SubjectPublicKeyInfo ::= SEQUENCE{
algorithm AlgorithmIdentifier,
subjectPublicKey BIT STRING}

Extensions ::= SEQUENCE OF Extension

Extension ::= SEQUENCE {
extnId EXTENSION.&id ({ExtensionSet}),
critical BOOLEAN DEFAULT FALSE,
extnValue OCTET STRING

-- contains a DER encoding of a value of type &ExtnType for the
-- extension object identified by extnId --

-- Definition of the following information object set is deferred, perhaps to
-- standardized profiles or to protocol implementation conformance statements.
-- The set is required to specify a table constraint on the critical component
-- of Extension.
-- ExtensionSet EXTENSION ::= { ... | ... }

EXTENSION ::= CLASS
{

&id OBJECT IDENTIFIER UNIQUE,
&ExtnType

}
WITH SYNTAX
{

SYNTAX &ExtnType
IDENTIFIED BY &id

}

Certificates ::= SEQUENCE {
certificate Certificate,
certificationPath ForwardCertificationPath OPTIONAL}

ForwardCertificationPath ::= SEQUENCE OF CrossCertificates

CertificationPath ::= SEQUENCE {
userCertificate Certificate,
theCACertificates SEQUENCE OF CertificatePair OPTIONAL}

CrossCertificates ::= SET OF Certificate

Final

54

CertificateList ::= SIGNED { SEQUENCE {
signature AlgorithmIdentifier,
issuer Name,
thisUpdate UTCTime,
nextUpdate UTCTime OPTIONAL,
revokedCertificates SEQUENCE OF SEQUENCE {

userCertificate CertificateSerialNumber,
revocationDate UTCTime,
crlEntryExtensions Extensions OPTIONAL } OPTIONAL,

crlExtensions [0] Extensions OPTIONAL }}
CertificatePair ::= SEQUENCE {

forward [0] Certificate OPTIONAL,
reverse [1] Certificate OPTIONAL

-- at least one of the pair shall be present -- }

-- attribute types--

userPassword ATTRIBUTE ::= {
WITH SYNTAX OCTET STRING (SIZE (0..ub-user-password))
EQUALITY MATCHING RULE octetStringMatch
ID id-at-userPassword }

userCertificate ATTRIBUTE ::= {
WITH SYNTAX Certificate
ID id-at-userCertificate }

cACertificate ATTRIBUTE ::= {
WITH SYNTAX Certificate
ID id-at-cACertificate }

authorityRevocationList ATTRIBUTE ::= {
WITH SYNTAX CertificateList
ID id-at-authorityRevocationList }

certificateRevocationList ATTRIBUTE ::= {
WITH SYNTAX CertificateList
ID id-at-certificateRevocationList }

crossCertificatePair ATTRIBUTE ::= {
WITH SYNTAX CertificatePair
ID id-at-crossCertificatePair }

-- information object classes --

ALGORITHM ::= TYPE-IDENTIFIER

-- Parameterized Types --
HASHED {ToBeHashed} ::= OCTET STRING (CONSTRAINED-BY {

--must be the result of applying a hashing procedure to the --
--DER-encoded octets of a value of -- ToBeHashed })

ENCRYPTED { To\BeEnciphered} := BIT STRING (CONSTRAINED BY {

Final

55

--must be the result of applying an encipherment procedure to the --
--BER-encoded octets of a value of -- ToBeEnciphered })

SIGNED { ToBeSigned } ::= SEQUENCE{
ToBeSigned,
COMPONENTS OF SIGNATURE { ToBeSigned }),

SIGNATURE { OfSignature } ::= SEQUENCE {
AlgorithmIdentifier,
ENCRYPTED { HASHED { OfSignature }}}

-- object identifier assignments --

id-at-userPassword OBJECT IDENTIFIER ::= {id-at 35}
id-at-userCertificate OBJECT IDENTIFIER ::= {id-at 36}
id-at-cAcertificate OBJECT IDENTIFIER ::= {id-at 37}
id-at-authorityRevocationList OBJECT IDENTIFIER ::= {id-at 38}
id-at-certificateRevocationList OBJECT IDENTIFIER ::= {id-at 39}
id-at-crossCertificatePair OBJECT IDENTIFIER ::= {id-at 40}
id-at-supportedAlgorithms OBJECT IDENTIFIER ::= {id-at 52}
id-at-deltaRevocationList OBJECT IDENTIFIER ::= {id-at 53}

END

Final

56

Appendix B - Certificate and CRL Extensions ASN.1

CertificateExtensions {joint-iso-ccitt ds(5) module(1) certificateExtensions(26) 0}
DEFINITIONS IMPLICIT TAGS ::=
BEGIN

-- EXPORTS ALL --

IMPORTS
id-at, id-ce, id-mr, informationFramework, authenticationFramework,

selectedAttributeTypes, upperBounds
FROM UsefulDefinitions {joint-iso-ccitt ds(5) module(1)
usefulDefinitions(0) 2}

Name, RelativeDistinguishedName, ATTRIBUTE, Attribute,
MATCHING-RULE FROM InformationFramework informationFramework

CertificateSerialNumber, CertificateList, AlgorithmIdentifier,
EXTENSION
FROM AuthenticationFramework authenticationFramework

DirectoryString
FROM SelectedAttributeTypes selectedAttributeTypes

ub-name
FROM UpperBounds upperBounds

ORAddress
FROM MTSAbstractService {joint-iso-ccitt mhs(6) mts(3)
modules(0) mts-abstract-service(1) version-1994 (0) } ;

-- Unless explicitly noted otherwise, there is no significance to the ordering
-- of components of a SEQUENCE OF construct in this specification.

-- Key and policy information extensions --

authorityKeyIdentifier EXTENSION ::= {
SYNTAX AuthorityKeyIdentifier
IDENTIFIED BY { id-ce 35 } }

AuthorityKeyIdentifier ::= SEQUENCE {
keyIdentifier [0] KeyIdentifier OPTIONAL,
authorityCertIssuer [1] GeneralNames OPTIONAL,
authorityCertSerialNumber [2] CertificateSerialNumber OPTIONAL }
(WITH COMPONENTS {..., authorityCertIssuer PRESENT,

authorityCertSerialNumber PRESENT} |
 WITH COMPONENTS {..., authorityCertIssuer ABSENT,

authorityCertSerialNumber ABSENT})

KeyIdentifier ::= OCTET STRING

subjectKeyIdentifier EXTENSION ::= {
SYNTAX SubjectKeyIdentifier
IDENTIFIED BY { id-ce 14 } }

SubjectKeyIdentifier ::= KeyIdentifier

keyUsage EXTENSION ::= {

Final

57

SYNTAX KeyUsage
IDENTIFIED BY { id-ce 15 } }

KeyUsage ::= BIT STRING {
digitalSignature (0),
nonRepudiation (1),
keyEncipherment (2),
dataEncipherment (3),
keyAgreement (4),
keyCertSign (5),
cRLSign (6) }

privateKeyUsagePeriod EXTENSION ::= {
SYNTAX PrivateKeyUsagePeriod
IDENTIFIED BY { id-ce 16 } }

PrivateKeyUsagePeriod ::= SEQUENCE {
notBefore [0] GeneralizedTime OPTIONAL,
notAfter [1] GeneralizedTime OPTIONAL }
(WITH COMPONENTS {..., notBefore PRESENT} |
WITH COMPONENTS {..., notAfter PRESENT})

certificatePolicies EXTENSION ::= {
SYNTAX CertificatePoliciesSyntax
IDENTIFIED BY { id-ce 32 } }

CertificatePoliciesSyntax ::= SEQUENCE SIZE (1..MAX) OF PolicyInformation

PolicyInformation ::= SEQUENCE {
policyIdentifier CertPolicyId,
policyQualifiers SEQUENCE SIZE (1..MAX) OF

PolicyQualifierInfo OPTIONAL }

CertPolicyId ::= OBJECT IDENTIFIER

PolicyQualifierInfo ::= SEQUENCE {
policyQualifierId CERT-POLICY-QUALIFIER.&id

({SupportedPolicyQualifiers}),
qualifier CERT-POLICY-QUALIFIER.&Qualifier

({SupportedPolicyQualifiers}{@policyQualifierId})
OPTIONAL }

SupportedPolicyQualifiers CERT-POLICY-QUALIFIER ::= { ... }

CERT-POLICY-QUALIFIER ::= CLASS {
&id OBJECT IDENTIFIER UNIQUE,
&Qualifier OPTIONAL }

WITH SYNTAX {
POLICY-QUALIFIER-ID &id
[QUALIFIER-TYPE &Qualifier] }

Final

58

policyMappings EXTENSION ::= {
SYNTAX PolicyMappingsSyntax
IDENTIFIED BY { id-ce 33 } }

PolicyMappingsSyntax ::= SEQUENCE SIZE (1..MAX) OF SEQUENCE {
issuerDomainPolicy CertPolicyId,
subjectDomainPolicy CertPolicyId }

supportedAlgorithms ATTRIBUTE ::= {
 WITH SYNTAX SupportedAlgorithm

EQUALITY MATCHING RULE algorithmIdentifierMatch
 ID { id-at 52 } }

SupportedAlgorithm ::= SEQUENCE {
 algorithmIdentifier AlgorithmIdentifier,

intendedUsage [0] KeyUsage OPTIONAL,
intendedCertificatePolicies [1] CertificatePoliciesSyntax OPTIONAL }

-- Certificate subject and certificate issuer attributes extensions --

subjectAltName EXTENSION ::= {
SYNTAX GeneralNames
IDENTIFIED BY { id-ce 17 } }

GeneralNames ::= SEQUENCE SIZE (1..MAX) OF GeneralName

GeneralName ::= CHOICE {
otherName [0] INSTANCE OF OTHER-NAME,
rfc822Name [1] IA5String,
dNSName [2] IA5String,
x400Address [3] ORAddress,
directoryName [4] Name,
ediPartyName [5] EDIPartyName,
uniformResourceIdentifier [6] IA5String,
iPAddress [7] OCTET STRING,
registeredID [8] OBJECT IDENTIFIER }

OTHER-NAME ::= TYPE-IDENTIFIER

EDIPartyName ::= SEQUENCE {
nameAssigner [0] DirectoryString {ub-name} OPTIONAL,
partyName [1] DirectoryString {ub-name} }

issuerAltName EXTENSION ::= {
SYNTAX GeneralNames
IDENTIFIED BY { id-ce 18 } }

subjectDirectoryAttributes EXTENSION ::= {
SYNTAX AttributesSyntax
IDENTIFIED BY { id-ce 9 } }

AttributesSyntax ::= SEQUENCE SIZE (1..MAX) OF Attribute

Final

59

-- Certification path constraints extensions --

basicConstraints EXTENSION ::= {
SYNTAX BasicConstraintsSyntax
IDENTIFIED BY { id-ce 19 } }

BasicConstraintsSyntax ::= SEQUENCE {
cA BOOLEAN DEFAULT FALSE,
pathLenConstraint INTEGER (0..MAX) OPTIONAL }

nameConstraints EXTENSION ::= {
SYNTAX NameConstraintsSyntax
IDENTIFIED BY { id-ce 30 } }

NameConstraintsSyntax ::= SEQUENCE {
permittedSubtrees [0] GeneralSubtrees OPTIONAL,
excludedSubtrees [1] GeneralSubtrees OPTIONAL }

GeneralSubtrees ::= SEQUENCE SIZE (1..MAX) OF GeneralSubtree

GeneralSubtree ::= SEQUENCE {
base GeneralName,
minimum [0] BaseDistance DEFAULT 0,
maximum [1] BaseDistance OPTIONAL }

BaseDistance ::= INTEGER (0..MAX)

policyConstraints EXTENSION ::= {
SYNTAX PolicyConstraintsSyntax
IDENTIFIED BY { id-ce 34 } }

PolicyConstraintsSyntax ::= SEQUENCE SIZE (1..MAX) OF SEQUENCE {
policySet [0] CertPolicySet OPTIONAL,
requireExplicitPolicy [1] SkipCerts OPTIONAL,
inhibitPolicyMapping [2] SkipCerts OPTIONAL }

SkipCerts ::= INTEGER (0..MAX)

CertPolicySet ::= SEQUENCE SIZE (1..MAX) OF CertPolicyId

-- Basic CRL extensions --

cRLNumber EXTENSION ::= {
SYNTAX CRLNumber
IDENTIFIED BY { id-ce 20 } }

CRLNumber ::= INTEGER (0..MAX)

reasonCode EXTENSION ::= {
SYNTAX CRLReason
IDENTIFIED BY { id-ce 21 } }

Final

60

CRLReason ::= ENUMERATED {
unspecified (0),
keyCompromise (1),
cACompromise (2),
affiliationChanged (3),
superseded (4),
cessationOfOperation (5),
certificateHold (6),
removeFromCRL (8) }

instructionCode EXTENSION ::= {
SYNTAX HoldInstruction
IDENTIFIED BY { id-ce 23 } }

HoldInstruction ::= OBJECT IDENTIFIER

invalidityDate EXTENSION ::= {
SYNTAX GeneralizedTime
IDENTIFIED BY { id-ce 24 } }

-- CRL distribution points and delta-CRL extensions --

cRLDistributionPoints EXTENSION ::= {
SYNTAX CRLDistPointsSyntax
IDENTIFIED BY { id-ce 31 } }

CRLDistPointsSyntax ::= SEQUENCE SIZE (1..MAX) OF DistributionPoint

DistributionPoint ::= SEQUENCE {
distributionPoint [0] DistributionPointName OPTIONAL,
reasons [1] ReasonFlags OPTIONAL,
cRLIssuer [2] GeneralNames OPTIONAL }

DistributionPointName ::= CHOICE {
fullName [0] GeneralNames,
nameRelativeToCRLIssuer [1] RelativeDistinguishedName }

ReasonFlags ::= BIT STRING {
unused (0),
keyCompromise (1),
caCompromise (2),
affiliationChanged (3),
superseded (4),
cessationOfOperation (5),
certificateHold (6) }

issuingDistributionPoint EXTENSION ::= {
SYNTAX IssuingDistPointSyntax
IDENTIFIED BY { id-ce 28 } }

IssuingDistPointSyntax ::= SEQUENCE {
distributionPoint [0] DistributionPointName OPTIONAL,
onlyContainsUserCerts [1] BOOLEAN DEFAULT FALSE,

Final

61

onlyContainsCACerts [2] BOOLEAN DEFAULT FALSE,
onlySomeReasons [3] ReasonFlags OPTIONAL,
indirectCRL [4] BOOLEAN DEFAULT FALSE }

certificateIssuer EXTENSION ::= {
SYNTAX GeneralNames
IDENTIFIED BY { id-ce 29 } }

deltaCRLIndicator EXTENSION ::= {
SYNTAX BaseCRLNumber
IDENTIFIED BY { id-ce 27 } }

BaseCRLNumber ::= CRLNumber

deltaRevocationList ATTRIBUTE ::= {
WITH SYNTAX CertificateList
EQUALITY MATCHING RULE certificateListExactMatch
ID {id-at 53 } }

-- Matching rules --

certificateExactMatch MATCHING-RULE ::= {
SYNTAX CertificateExactAssertion
ID id-mr-certificateExactMatch }

CertificateExactAssertion ::= SEQUENCE {
serialNumber CertificateSerialNumber,
issuer Name }

certificateMatch MATCHING-RULE ::= {
SYNTAX CertificateAssertion
ID id-mr-certificateMatch }

CertificateAssertion ::= SEQUENCE {
serialNumber [0] CertificateSerialNumber OPTIONAL,
issuer [1] Name OPTIONAL,
subjectKeyIdentifier [2] SubjectKeyIdentifier OPTIONAL,
authorityKeyIdentifier [3] AuthorityKeyIdentifier OPTIONAL,
certificateValid [4] UTCTime OPTIONAL,
privateKeyValid [5] GeneralizedTime OPTIONAL,
subjectPublicKeyAlgID [6] OBJECT IDENTIFIER OPTIONAL,
keyUsage [7] KeyUsage OPTIONAL,
subjectAltName [8] AltNameType OPTIONAL,
policy [9] CertPolicySet OPTIONAL,
pathToName [10] Name OPTIONAL }

AltNameType ::= CHOICE {
builtinNameForm ENUMERATED {

rfc822Name (1),
dNSName (2),
x400Address (3),
directoryName (4),
ediPartyName (5),

Final

62

uniformResourceIdentifier (6),
iPAddress (7),
registeredId (8) },

otherNameForm OBJECT IDENTIFIER }

certificatePairExactMatch MATCHING-RULE ::= {
SYNTAX CertificatePairExactAssertion
ID id-mr-certificatePairExactMatch }

CertificatePairExactAssertion ::= SEQUENCE {
forwardAssertion [0] CertificateExactAssertion OPTIONAL,
reverseAssertion [1] CertificateExactAssertion OPTIONAL }
(WITH COMPONENTS {..., forwardAssertion PRESENT} |
 WITH COMPONENTS {..., reverseAssertion PRESENT})

certificatePairMatch MATCHING-RULE ::= {
SYNTAX CertificatePairAssertion
ID id-mr-certificatePairMatch }

CertificatePairAssertion ::= SEQUENCE {
forwardAssertion [0] CertificateAssertion OPTIONAL,
reverseAssertion [1] CertificateAssertion OPTIONAL }
(WITH COMPONENTS {..., forwardAssertion PRESENT} |
 WITH COMPONENTS {..., reverseAssertion PRESENT})

certificateListExactMatch MATCHING-RULE ::= {
SYNTAX CertificateListExactAssertion
ID id-mr-certificateListExactMatch }

CertificateListExactAssertion ::= SEQUENCE {
issuer Name,
thisUpdate UTCTime,
distributionPoint DistributionPointName OPTIONAL }

certificateListMatch MATCHING-RULE ::= {
SYNTAX CertificateListAssertion
ID id-mr-certificateListMatch }

CertificateListAssertion ::= SEQUENCE {
issuer Name OPTIONAL,
minCRLNumber [0] CRLNumber OPTIONAL,
maxCRLNumber [1] CRLNumber OPTIONAL,
reasonFlags ReasonFlags OPTIONAL,
dateAndTime UTCTime OPTIONAL,
distributionPoint [2] DistributionPointName OPTIONAL }

algorithmIdentifierMatch MATCHING-RULE ::= {
SYNTAX AlgorithmIdentifier
ID id-mr-algorithmIdentifierMatch }

-- Object identifier assignments --

id-at-supportedAlgorithms OBJECT IDENTIFIER ::= {id-at 52}

Final

63

id-at-deltaRevocationList OBJECT IDENTIFIER ::= {id-at 53}
id-ce-subjectDirectoryAttributes OBJECT IDENTIFIER ::= {id-ce 9}
id-ce-subjectKeyIdentifier OBJECT IDENTIFIER ::= {id-ce 14}
id-ce-keyUsage OBJECT IDENTIFIER ::= {id-ce 15}
id-ce-privateKeyUsagePeriod OBJECT IDENTIFIER ::= {id-ce 16}
id-ce-subjectAltName OBJECT IDENTIFIER ::= {id-ce 17}
id-ce-issuerAltName OBJECT IDENTIFIER ::= {id-ce 18}
id-ce-basicConstraints OBJECT IDENTIFIER ::= {id-ce 19}
id-ce-cRLNumber OBJECT IDENTIFIER ::= {id-ce 20}
id-ce-reasonCode OBJECT IDENTIFIER ::= {id-ce 21}
id-ce-instructionCode OBJECT IDENTIFIER ::= {id-ce 23}
id-ce-invalidityDate OBJECT IDENTIFIER ::= {id-ce 24}
id-ce-deltaCRLIndicator OBJECT IDENTIFIER ::= {id-ce 27}
id-ce-issuingDistributionPoint OBJECT IDENTIFIER ::= {id-ce 28}
id-ce-certificateIssuer OBJECT IDENTIFIER ::= {id-ce 29}
id-ce-nameConstraints OBJECT IDENTIFIER ::= {id-ce 30}
id-ce-cRLDistributionPoints OBJECT IDENTIFIER ::= {id-ce 31}
id-ce-certificatePolicies OBJECT IDENTIFIER ::= {id-ce 32}
id-ce-policyMappings OBJECT IDENTIFIER ::= {id-ce 33}
id-ce-policyConstraints OBJECT IDENTIFIER ::= {id-ce 34}
id-ce-authorityKeyIdentifier OBJECT IDENTIFIER ::= {id-ce 35}
id-mr-certificateExactMatch OBJECT IDENTIFIER ::= {id-mr 34}
id-mr-certificateMatch OBJECT IDENTIFIER ::= {id-mr 35}
id-mr-certificatePairExactMatch OBJECT IDENTIFIER ::= {id-mr 36}
id-mr-certificatePairMatch OBJECT IDENTIFIER ::= {id-mr 37}
id-mr-certificateListExactMatch OBJECT IDENTIFIER ::= {id-mr 38}
id-mr-certificateListMatch OBJECT IDENTIFIER ::= {id-mr 39}
id-mr-algorithmIdentifierMatch OBJECT IDENTIFIER ::= {id-mr 40}

-- The following OBJECT IDENTIFIERS are not used by this specification:
-- {id-ce 2}, {id-ce 3}, {id-ce 4}, {id-ce 5}, {id-ce 6}, {id-ce 7},
-- {id-ce 8}, {id-ce 10}, {id-ce 11}, {id-ce 12}, {id-ce 13},
-- {id-ce 22}, {id-ce 25}, {id-ce 26}

END

Final

64

Appendix C. API for Certificate Processor
This section defines a high level API for DoE Travel and other applications which are not
cryptographically aware.

C.1 Common Data Structures
The certificate processing module shall support an ASN.1 encoded signed message format
and status codes as common parameters.

SignedMessage ::= SEQUENCE {
message CompoundMessage, -- time/dated message with signer's

-- name and certificate number
signatureValue OCTET STRING } -- signature calculated on message

CompoundMessage ::= SEQUENCE {
body OCTET STRING, -- message to be signed
timestamp UTCTtime, -- time object was signed
signers_name Name, -- distinguished name of signer
cert_issuer Name, -- distinguished name of certificate

-- issuer
cert_num INTEGER } -- signer's certificate serial number

The certificate processing module shall support the following type definitions:

#typedef DN *char; /* DN is an X.500 distinguished name. It is represented
as an alphanumeric string

*/
#typedef time *char; /* string of numeric characters representing time and

 date. The string is interpreted as ddmmyyyyhhxx
 where

dd is the day of the month
mm is the month
yyyy is the year
hh is the hour ("military time", e.g., at 1:15 PM

hh would be "13")
xx is th e number of minutes past the hour (e.g.,

for 1:15 PM, xx would be "15")
 Note that seconds are ommitted.

*/
#typedef SN *char; /* SN is a serial number associated with a certificate.

It is represented by a numeric string.
*/

#typedef CRL *char; /* CRL is a pointer to an array of characters. The
 array contains an ASN.1 encoded X.509 certificate
 revocation list */

#typedef CERT *char; /* CERT is a pointer to an array of characters. The
 array contains an ASN.1 encoded X.509 certificate. */

The certificate processing module shall support the following constants:

GENERAL_FAILURE 10h call failed; reasons unknown or unspecified
GENERAL_ALLOC 11h memory allocation failed, subroutine terminated.
GENERAL_PARAMS 12h parameters missing or ill-formed

Final

65

Initialization Status Codes
CM_INIT 00h initialization completed
CM_INIT_FAILED 01h initialization failed
CM_INIT_NOCACHE 02h initialization completed; no certificate or CRL cache
CM_INIT_NOINFO 03h initialization completed; no local information
CM_INIT_NEITHER 04h initialization completed; no cache or local information

Login Status Codes
CM_LOGIN 00h login completed
CM_LOGIN_BADPASS 01h login failed; bad password

Logout Status Codes
CM_LOGOUT 00h signed local information and saved cache
CM_LOGOUT_NOSIG 01h could not sign local information
CM_LOGOUT_FAILED 02h logout failure

Compute Signature Status Codes
CM_CS 00h signed message
CM_CS_NOMSG 01h no message to sign
CM_CS_BADTIME 02h bad timestamp
CM_CS_NONAME 03h user name unavailable
CM_CS_NOCERT 04h user certificate number unavailable
CM_CS_ALLOC 05h could not allocate required memory

Verify Signature Status Codes
CM_VS 00h verified message
CM_VS_BADCON 01h ill-formed constraints
CM_VS_BADTIME 02h bad timestamp
CM_VS_CONVIOL 03h path(s) violate constraints
CM_VS_NOCERT 04h user certificate unavailable
CM_VS_CERTEXP 05h user certificate expired before signature was generated

(according to the timestamp in the message)
CM_VS_NOPATH 06h could not find path to Travel System CA

CA.2 Subroutine Calls

C.2.1 General Application Subroutine Calls

cm_initialize (Status:int)
Parameters:

Status output{CM_INIT, CM_INIT_*, GENERAL_*} CM_INIT indicates successful
completion; CM_INIT_FAILED indicates the module failed to initialize; other
CM_INIT_* codes indicate that the module does not have complete information, but is
available for selected operations.

Functionality:

The cm_initialize function prepares the certificate processing module to perform basic
operations, but does not decrypt a private key. The initialization function will load the
certificate and CRL cache, as well as the local information such addresses of PKI

Final

66

components (e.g., the CA and DS). If the cache or local information is not present, the
module will function, but will return appropriate status codes. This permits the user to
generate their keys and certificate request on the module.

After the intialization function is called, the cryptographic module shall accept calls to
verify signatures, generate hashes, login the user, and get certificates or CRLs. Any other
commands require a private DSA key, and will require require a cm_login command.

cm_login (Password:*char,Status:int)

Parameters:

Password: input pointer to a string containing an alphanumeric/special character text
string of unlimited length representing the user's password.

Status: output status/error code {CM_LOGIN, CM_LOGIN_BADPASS,
GENERAL_*} Only CM_LOGIN indicates successful completion.

Functionality:

A cm_login command will result in retrieval/loading and decryption of the private DSA
key, if a key has been previously generated. The module will verify that the private key has
been recovered by generating and comparing signatures on locally stored information.

cm_logout (Status:int)

Parameters:

Status: output status/error codes. Legal values are {CM_LOGOUT,
CM_LOGOUT_*, GENERAL_*} Only CM_LOGOUT indicates successful completion.

Functionality:

The cm_logout command will return the associated cryptographic module to its unitialized
state. Software cryptographic modules will additionally overwrite the memory used by the
crypto module, to prevent disclosure of the user's private key through re-allocation of
memory. The erasure will comply with ANSI X.9-17-1985 requirements for zeroizing
Random Access Memory.

cm_compute_sig (Dlen:int, Data:*char, Current_time:TIME, Signedmsg:SMSG,
Status:int)

Parameters:

Dlen input the length, in bytes, of the input data.

Data input data to be timestamped and signed.

Current_time input current time; will be inserted into message before signing.

Final

67

Signedmsg output ASN.1 encoded, signed message; will incude user name, certifcate
serial number, and time signature was applied.

Status outputstatus/error codes. Legal values are {CM_CS, CM_CS_*, and
GENERAL_*}. Only CM_CS indicates successful completion.

Functionality:

The compute signature command recieves a pointer to a variable length block of data, the
data length and the time. The module will use the locally stored user Name and public
key to generate a signed message conforming to the format given above.

cm_verify_sig (Signed_MSG:SMSG, Constraints:&char[], Current_time:TIME,
Status:int)

Parameters:

Signed_Msg input signed message that requires verification

Constraints input pointer to an ASN.1 encoded sequence of certification path
constraints; legal values are basicConstraints and policyConstraints .

Current_time input current date and time; required to determine if locally cached CRLs
are still current

Status outputerror code/output {CM_VS, CM_VS_*, GENERAL_*}. Only
CM_VS indicates successful verification of the signature and path.

Functionality:

cm_verify_sig receives three parameters: a pointer to a SignedMessage as defined in A.1,
constraints upon the verification path, and a pointer to a status field. Verify_Signature
will use the information in the SignedMessage to find the certificates and CRLs required
to accept or reject the signature. cm_verify_sig will retrieve certificates and CRLs from
the local cache or DS as required. Once a valid path to the Travel System CA has been
determined, the DSS parameters can be determined for each set of signatures. Validity of a
path shall be evaluated according to the guidelines presented in Section 6.3. Signatures are
then calculated for each certificate and CRL as well as the message itself.

Cm_verify_sig returns a status code with the result. The status code CM_VS indicates
that the signature and certificate path were both verified. CM_BADTIME indicates that
the certificate or path were not valid at the time the signature was applied to the
SignedMessage. Other error messages indicate that the user certificate could not be
found, had expired, or a valid path to the Travel System CA could not be constructed.

Final

68

C.2.2 Infrastructure-Related Operations

Revoke_Cert(Reason:int, Time:TIME, Status:int)

Parameters:

Reasons: input. Legal values are {keyCompromise, affiliationChanged, supersed,
cessationOfOperation, unspecified}

Time: input. This parameter signifies the last time signatures associated with this
certificate should be trusted.

Status: output. This parameter provides status/error codes. Legal values are {CM_REQ,
CM_REQ_*, and GENERAL_*}. Only CM_REQ indicates successful completion.

Functionality:

Revoke_Cert will revoke the current user's certificate, for the reason supplied as
parameter Reason. The module will generate a Cert_Revoke_Req message, sign it with
the corresponding private key, and send it to the CA. The module will wait for a response
for 300 seconds.

Gen_Cert_Req(Current_time:TIME,Status:int)

Parameters:

Current_time input current date and time

Status output status/error codes. Legal values are {CM_REQ, CM_REQ_*, and
GENERAL_*}. Only CM_REQ indicates successful completion.

Functionality:

Generate certificate request - This command will generate a new public-private key pair,
create a certificate request message, sign it with the private key and will write it to a
diskette for delivery to an ORA.

Renew_Cert (Current_time:TIME,Status:int)

Parameters:

Current_time input current date and time

Status outputstatus/error codes. Legal values are {CM_REN, CM_REN_*, and
GENERAL_*}. Only CM_REN indicates successful completion.

Functionality:

Renew certificate will generate a new certificate request and sign it with the new private
key and the old private key. The certificate request will be a KeyUpdReq message. It
will be doubly signed, as defined in Section 6.4.1. The inner message will be signed with

Final

69

the private key associated with the new public key. The outer message will be signed with
the private key associated with the user's current certificate.

The KeyUpdReq message will contain the information noted in Section 6.4.3.

The doubly wrapped message will be sent to the CA as an electronic mail message.

Get_Cert_by_Name (User_name:DN, Number:int, Certificates:&Cert[],
Status:int)

Parameters:

User_name: input distinguished name of the user whose certificates are needed

Number: output number of certificates retrieved

Certificates: output array of Number certificates for User_name

Status: output status codes (CM_CNAME, CM_CNAME_*, or
GENERAL_*)

Functionality:

Get_Cert_by_Name will check the local cache for certificates associated with a particular
user name. If no matching certificates are found in the cache, the X.500 DUA will
request all certificates for the specified distinguished name from the directory service.

When matching certificates are found, space is allocated for the array Certificates, and the
matching certificates are returned to the user. The number of certificates in the array is
passed in the parameter Number. Get_Cert_by_Name may also store the retrieved
certificate(s) in the local cache.

If the certificate is not found, Get_Cert_by_Name will return the status code
CM_CNAME_NOT. If the directory service is unavailable, the status code
CM_CNAME_NODS will be returned.

Get_Cert_by_Number (Cert_serial_number:SN, Issuer_name:DN,
Certificate:CERT,Status:int)

Parameters:

Cert_serial_number: input serial number of requested certificate

Issuer_name: input issuer's distinguished name

Certificate: output certificate with serial number equal to Cert_serial_number
issued by Issuer_name

Status: output status/error code: legal values are {CM_CNUM,
CM_CNUM_*, an GENERAL_*} Only CM_CNUM indicates normal completion.

Functionality:

Final

70

Get_Cert_by_Number will check the local cache for a certificate withe the specified serial
number issued by the specified CA. If the certificate is not found in the cache, the X.500
DUA will request the certificate for the specified serial number and issuer name from the
directory service. Get_Cert_by_Number may also store the retrieved certificate in the local
cache.

When the certificate is found, space is allocated for the parameter Certificate, and the
certificate is returned to the user.

If the certificate is not found, Get_Cert_by_Number will return the status code
CM_CNUM_NOT. If the directory service is unavailable, the status code
CM_CNUM_NODS will be returned.

get_CRL (CRL_name:DN, Rev_list:CRL, Status:int)

Parameters:

CRL_name: input Distinguished name of CRL

Rev_list: output CRL

Status: output status/error codes: Legal values are {CM_CRL, CM_CRL_*, and
GENERAL_*}; only CM_CRL indicates successful completion.

Functionality:

Get_CRL will request the current certificate revocation list for a particular certification
authority from the Directory Service. It may also store the retrieved CRL in the local
cache.

Remove_Private_Key (Status:int)

Parameters:

Status: output This parameter conveys status/error codes. Legal values are
{CM_RKEY, CM_RKEY_*, GENERAL_*}; only CM_RKEY indicates successful
completion.

Functionality:

This command will delete the private key from the module, including its storage areas. All
erasures will comply with military standards for secure erasure.

Final

71

Appendix D. Cryptographic Application Programming Interface
The programming interface for the cryptographic module shall be a subset of the Generic
Cryptographic Services API (GCS-API) from X/Open [GCS]. The programming
interface shall conform to the X/Open Preliminary Specification P442, June 1996.9

The cryptographic module shall support cryptographic contexts implementing the
algorithms and modes listed in Table B-1.

Algorithm Mode Key Size

DSS with SHA-1 sign, verify 1024

DES ECB 56

The cryptographic module shall support the GCS-API Cryptographic Service Facility
model. The cryptographic module shall meet all functional requirements identified in
Section 5; the precise set of functions required shall be selected by the vendor from
[GCS].

9 This specification is available from X/Open. The document reference is X/Open Preliminary
Specification P442 ISBN 1-85912-195-0 (6/96).

Final

72

Appendix E. Sample Performance Specifications
This section provides sample performance specifications for PKI components. The actual
performance requirements for DoE Travel should be determined according to the
application and the computing platforms for each component. The performance
requirements provided in Section F.4 are designed for a software cryptographic module on
a 33 Mhz 486 PC.

E.1 CA Performance Specifications
Table E-1 provides sample performance specifications for CA functions. The response
times are for local processing and exclude communications delays and human review or
intervention, and are measured from the time the last byte of a request transaction is
received at the CA to the time the first byte of response leaves the CA.

Table E-1 Performance Specifications for CA Functions

Function Inputs Outputs Response
Time

generate own public
private key

size of modulus p public and private keys 20 seconds

process certificate
request

subject distinguished
name, p, q, g, y

certificate to DS and
requesting ORA

30 seconds

process request to
revoke a certificate

certificate number or
other unique identifier

CRL to DS; return signed
acknowledgement

20 seconds

E.2 ORA Performance Specifications
Table E-2 provides sample performance specifications for ORA functions. These
specifications include maximum response time and availability requirements. The response
times are maximum response times under the estimated workload, excluding
communications delays. They are measured from the time the last byte of a request
transaction is received at the ORA to the time the first byte of response leaves the ORA.
Reliability requirements (e.g., mean time between failures (MTBF), mean time to recover
(MTTR), etc.) are equivalent to those for commercial computer systems operating in an
office environment.

Final

73

Table E-2 Performance Specifications for ORA Functions and Transactions

Function/
Transaction

Inputs Outputs Response
Time

generate a key pair size of p p, q, g, x, y. 30 seconds

request certificate p, q, g,
and y

certificate
request to CA

30 seconds

request certificate
revocation

certificate
number

revocation
request to CA

30 seconds

E.3 Certificate Processing Performance Specifications
Table E-3 provides sample performance specifications for certificate processing functions.
These specifications include maximum response time for generation of transactions. These
times are measured from the time the certificate processing module is called to the time
the transaction is generated and the communications module is called.

Table E-3 Performance Specifications for a Certificate Processing Module
(All Functions and Transactions are Local)

Functions/
Transaction

Inputs Outputs Response
Time

request certificate registration p, q, g, and y certificate request
to ORA

45 seconds

electronic certificate request p, q, g, and y certificate request
to ORA/CA

30 seconds

request certificate revocation certificate
number

revocation request
to CA

30 seconds

request a certificate from DS subject DN request to DS 10 seconds

request a CRL from DS CA DN request to DS 10 seconds

path verification

(length 2)

sender DN sender public key 45 seconds

Final

74

E.4. Software Cryptographic Module Performance Specifications
Table E-4 provides sample performance specifications for a software cryptographic
module. These specifications assume a 486 33Mhz PC platform and do not use
performance acceleration techniques such as pre-computation for DSS digital signatures.
A system using pre-computation might exhibit a longer initialization times, but enhanced
signature generation performance.

Table E-4 Performance Specifications for a Software Cryptographic Module
(All Functions and Transactions are Local)

Functions/
Transactions

Inputs Outputs Response Time

generate DSA key
pair

p, q, g y
(x held internally)

45 seconds

generate SHA-1 hash message message digest 5 seconds (5K byte
message)

signature generation message digest and
(p, q, g, y)

DSS signature 45 seconds

signature verification message, signer's
public key and (p,q,g)

binary 1 minute (5K byte
message)

load private key password status 20 seconds

export public key password encrypted private key 20 seconds

initialize module NA status 15 seconds

E.5 DS Performance Specifications
Table E-5 provides the performance specifications for DS functions. These
specifications include response time and availability requirements. The response times
are maximum response times under the specified workload. The response times exclude
communications delays. They are measured from the time the last byte of request
transaction is received at the DS to the time the first byte of response leaves the DS or
the transaction processing is completed.

Table E-5 Performance Specifications for Directory Service Transactions

Final

75

(All transactions are electronic)

Transaction Inputs Outputs Response
Time

add a
certificate

certificate none 10
seconds

post new
CRL

CRL none 10
seconds

certificate
request

certificate
number and
issuer DN,
or owner
DN

certificate or
error
message

10
seconds

CRL request issuer DN CRL 10
seconds

Note: The issuer distinguished name (DN) is redundant because there is only one CA
for the Travel System, but it is necessary to allow for future enhancements.

Final

76

Appendix F. CA Key Pair Update
Like any PKI entity, the Travel CA's certificate will need to generate a new key pair
periodically. The text here provides a mechanism where key pair update can be achieved
without requiring all users to immediately visit an ORA. This procedure uses the current
key pair to protect the new key pair, so users who trust the old key pair can trust the new
certificate.

This text is drawn from the current draft of the PKI-X specifications.

F.1 Overview and Rationale
The basis of the procedure described here is that the CA protects its new public key using
its previous private key and vice-versa. Thus when a CA updates its key pair it must
generate two new cACertificate attribute values if certificates are made available using an
X.500 directory.

When the CA changes its key pair those entities who have acquired the old CA public key
via "out-of-band" means are most affected. These end entities begin all certification paths
with the old CA key pair. It is these end entities who will need access to the new CA
public key. By protecting it with the old CA private key, these end entities can construct a
certification chain for certificates issued under the new key pair.

When the user returns to an ORA for a new certificate, they will acquire the new
certificate through out-of-band means, and will be able to trust that key pair directly.

The data structure used to protect the new and old CA public keys is a standard
certificate (which may also contain extensions). There are no new data structures
required.

F.2 CA Operator actions
To change the key of the CA, the CA operator does the following:

1. Generate a new key pair.
2. Create a certificate containing the old CA public key signed with the new private

key (the "old with new" certificate).
3. Create a certificate containing the new CA public key signed with the old private

key (the "new with old" certificate).
4. Create a certificate containing the new CA public key signed with the new private

key (the "new with new" certificate).
5. Publish these new certificates via the directory and/or other means. (A

CAKeyUpdAnn message.)
6. Export the new CA public key so that end entities may acquire it using the

"out-of-band" mechanism.
The old CA private key is then no longer required. The old CA public key will however
remain in use for some time. The time when the old CA public key is no longer required
(other than for non-repudiation) will be when all end entities of this CA have acquired the
new CA public key via "out-of-band" means.

Final

77

The "old with new" certificate should have a validity period starting at the generation time
of the old key pair and ending at the time at which the CA will next update its key pair.

The "new with old" certificate should have a validity period starting at the generation time
of the new key pair and ending at the time by which all end entities of this CA will securely
possess the new CA public key.

The "new with new" certificate should have a validity period starting at the generation
time of the new key pair and ending at the time at which the CA will next update its key
pair.

